Linear and Integer Optimization : Theory and Practice, Third Edition (Advances in Applied Mathematics) (3RD)

個数:

Linear and Integer Optimization : Theory and Practice, Third Edition (Advances in Applied Mathematics) (3RD)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 686 p.
  • 言語 ENG
  • 商品コード 9781032917801
  • DDC分類 519.72

Full Description

Presenting a strong and clear relationship between theory and practice, Linear and Integer Optimization: Theory and Practice is divided into two main parts. The first covers the theory of linear and integer optimization, including both basic and advanced topics. Dantzig's simplex algorithm, duality, sensitivity analysis, integer optimization models, and network models are introduced.

More advanced topics also are presented including interior point algorithms, the branch-and-bound algorithm, cutting planes, complexity, standard combinatorial optimization models, the assignment problem, minimum cost flow, and the maximum flow/minimum cut theorem.

The second part applies theory through real-world case studies. The authors discuss advanced techniques such as column generation, multiobjective optimization, dynamic optimization, machine learning (support vector machines), combinatorial optimization, approximation algorithms, and game theory.

Besides the fresh new layout and completely redesigned figures, this new edition incorporates modern examples and applications of linear optimization. The book now includes computer code in the form of models in the GNU Mathematical Programming Language (GMPL). The models and corresponding data files are available for download and can be readily solved using the provided online solver.

This new edition also contains appendices covering mathematical proofs, linear algebra, graph theory, convexity, and nonlinear optimization. All chapters contain extensive examples and exercises. This textbook is ideal for courses for advanced undergraduate and graduate students in various fields including mathematics, computer science, industrial engineering, operations research, and management science.

Contents

Basic Concepts of Linear Optimization. LINEAR OPTIMIZATION THEORY: BASIC TECHNIQUES. Geometry and Algebra of Feasible Regions. Dantzig's Simplex Algorithm. Duality, Feasibility, and Optimality. Sensitivity Analysis. Large-Scale Linear Optimization. Integer Linear Optimization. Linear Network Models. Computational Complexity. LINEAR OPTIMIZATION PRACTICE: ADVANCED TECHNIQUES. Designing a Reservoir for Irrigation. Classifying Documents by Language. Production Planning; A Single Product Case. Production of Coffee Machines. Conflicting Objectives: Producing Versus Importing. Coalition Formation and Profit Distribution. Minimizing Trimloss When Cutting Cardboard. Off-Shore Helicopter Routing. The Catering Service Problem. Appendix A Mathematical Proofs. Appendix B Linear Algebra. Appendix C Graph Theory. Appendix D Convexity. Appendix E Nonlinear Optimization. Appendix F Writing LO-Models in GNU MathProg (GMPL). List of Symbols. Bibliography.

最近チェックした商品