Structural Design and Optimization of Lifting Self-forming GFRP Elastic Gridshells based on Machine Learning (Digital Frontiers in Buildings and Infrastructure)

個数:

Structural Design and Optimization of Lifting Self-forming GFRP Elastic Gridshells based on Machine Learning (Digital Frontiers in Buildings and Infrastructure)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 212 p.
  • 言語 ENG
  • 商品コード 9781032901206
  • DDC分類 690

Full Description

Structural Design and Optimization of Lifting Self-forming GFRP Elastic Gridshells Based on Machine Learning presents the algorithms of machine learning (ML) that can be used for the structural design and optimization of glass fiber reinforced polymer (GFRP) elastic gridshells, including linear regression, ridge regression, K-nearest neighbors, decision tree, random forest, AdaBoost, XGBoost, artificial neural network, support vector machine (SVM), and six enhanced forms of SVM. It also introduces interpretable ML approaches, including partial dependence plot, accumulated local effects, and SHaply additive exPlanations (SHAP). Also, several methods for developing ML algorithms, including K-fold cross-validation (CV), Taguchi, a technique for order preference by similarity to ideal solution (TOPSIS), and multi-objective particle swarm optimization (MOPSO), are proposed. These algorithms are implemented to improve the applications of gridshell structures using a comprehensive representation of ML models. This research introduces novel frameworks for shape prediction, form-finding, structural performance assessment, and shape optimization of lifting self-forming GFRP elastic gridshells using ML methods. This book will be of interest to researchers and academics interested in advanced design methods and ML technology in architecture, engineering, and construction fields.

Contents

Chapter 1 Introduction of GFRP Elastic Gridshell Structures and Machine Learning Chapter 2 A Review of GFRP Elastic Gridshell Structures and Machine Learning Algorithms Chapter 3 Shape Prediction of Slender Bars Based on Discrete Elements Chapter 4 Shape Prediction of GFRP Elastic Gridshells During Lifting Construction Chapter 5 Form-Finding of GFRP Elastic Gridshells During Lifting Construction Process Chapter 6 Structural Performance Assessment of GFRP Elastic Gridshells Chapter 7 Structural Optimization of GFRP Elastic Gridshells Chapter 8 Conclusions and Recommendations for Structural Design and Optimizations of Gridshell Structures

最近チェックした商品