Data-Driven Environmental Intelligence (Intelligent Data-driven Technology for Sustainability)

個数:
  • 予約

Data-Driven Environmental Intelligence (Intelligent Data-driven Technology for Sustainability)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 440 p.
  • 言語 ENG
  • 商品コード 9781032900070

Full Description

The text provides an extensive discussion on hybrid intelligent techniques and their variants for application to environmental data-centric systems, often guided by a batch process. This book reviews the fundamental concepts of gathering, processing, and analyzing data from batch processes, followed by a review of intelligent tools and techniques that can be used in this direction. The book will also cover novel intelligent algorithms for the purpose of effective environmental pollution data management at par with the existing standards.

This book:

Introduces novel hybrid intelligent techniques needed to address environmental pollution for the well-being of the global environment.
Examines the latest hybrid intelligent technologies and algorithms related to state-of-the-art methodologies for monitoring and mitigating environmental pollution.
Introduces techniques for the removal of heavy metals, phenol, azo, and non-azo dyes from industrial effluents
Explores green synthesis of nanofilters and their application to environmental data management.
Illustrates the statistical prediction of nanoparticle levels for controlling vector population and Internet of Things-enabled hybrid intelligent environment management.

It is primarily written for senior undergraduates, graduate students, and academic researchers in the fields of electrical engineering, electrical and communications engineering, computer science and engineering, and environmental engineering.

Contents

1. Data-Driven Environmental Intelligence: Unlocking the Power of Data for a Sustainable Planet. 2. Hybrid Computational Intelligence Techniques for Environmental Hazard Prediction and Risk Management. 3. Microorganism Image Clustering Based on Type-2 Fuzzy Sets and Restricted Equivalent Functions. 4. Intelligent light population management. 5. Removal of Heavy Metals, Phenol, Azo, and Non-Azo Dyes from Industrial Effluents. 6. Green synthesis of nanoparticles and their applications in various fields: Analyzing the current status in 2025. 7. Harnessing Nature's Green Filter: A Comprehensive Review of Phytoremediation for Airborne Pollutants. 8. Application of Regression Models in Pollution Monitoring: Insights and Implications. 9. Preference-Leveled Evaluation Functions in Fuzzy AI Systems for Assessing Cell Abnormalities in Healthcare IoT Environments. 10. IoT-enabled Hybrid Intelligent Environmental Management. 11. Towards a Sustainable Future: A Brief Review of Renewable Energy Systems. 12. The Dynamics of Sustainability: Evaluating Social and Economic Influences on Global SDG Advancements and a Machine Learning Perspective. 13. Data-Driven Environmental Intelligence: Concluding Remarks and Future Directions.

最近チェックした商品