Tiny Machine Learning Techniques for Constrained Devices

個数:
  • 予約

Tiny Machine Learning Techniques for Constrained Devices

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 248 p.
  • 言語 ENG
  • 商品コード 9781032897523

Full Description

Tiny Machine Learning Techniques for Constrained Devices explores the cutting-edge field of TinyML, enabling intelligent machine learning on highly resource-limited devices such as microcontrollers and edge IoT nodes. This book provides a comprehensive guide to designing, optimizing, securing, and applying TinyML models in real-world constrained environments.

The book offers thorough coverage of key topics, including:

Foundations and Optimization of TinyML: Covers microcontroller-centric power optimization, core principles, and algorithms essential for deploying efficient machine learning models on embedded systems with strict resource constraints.
Applications of TinyML in Healthcare and IoT: Presents innovative use cases such as compact AI solutions for healthcare challenges, real-time detection systems, and integration with low-power IoT and LPWAN technologies.
Security and Privacy in TinyML: Addresses the unique challenges of securing TinyML deployments, including privacy-preserving techniques, blockchain integration for secure IoT applications, and methods for protecting resource-constrained devices.
Emerging Trends and Future Directions: Explores the evolving landscape of TinyML research, highlighting new applications, adaptive frameworks, and promising avenues for future investigation.
Practical Implementation and Case Studies: Offers hands-on insights and real-world examples demonstrating TinyML in action across diverse scenarios, providing guidance for engineers, researchers, and students.

This book is an essential resource for embedded system designers, AI practitioners, cybersecurity professionals, and academics who want to harness the power of TinyML for smarter, more efficient, and secure edge intelligence solutions.

Contents

1. Microcontroller-Centric Power Optimization in Embedded Systems 2. Core Principles and Algorithms for Tiny Machine Learning 3. TinyML and Edge AI for Low-Power IoT and LPWAN Applications 4. Efficient Real-Time Mask Detection Using TinyML 5. TinyML for Smarter Healthcare: Compact AI Solutions for Medical Challenges 6. Adaptive Energy Modeling and Communication Optimization for LoRaWAN-Based IoT Networks 7. Security and Privacy in TinyML Applications 8. Secure Tiny Machine Learning on Resource-Constrained IoT Devices 9. Integrating TinyML with Blockchain for Secure IoT Applications 10. TinyML: Emerging Applications and Future Research Directions

最近チェックした商品