Explainable Artificial Intelligence-based Industrial Internet of Things : Technologies and Applications

個数:
  • ポイントキャンペーン

Explainable Artificial Intelligence-based Industrial Internet of Things : Technologies and Applications

  • ウェブストア価格 ¥43,929(本体¥39,936)
  • CRC Press(2025/12発売)
  • 外貨定価 US$ 200.00
  • クリスマスポイント2倍キャンペーン(~12/25)
  • ポイント 798pt
  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 320 p.
  • 言語 ENG
  • 商品コード 9781032883670
  • DDC分類 006.3

Full Description

The text explains how explainable artificial intelligence impacts problem-solving and aims to provide practical suggestions across various emerging industries. It further discusses important topics such as the strategic utilization of explainable artificial intelligence in supply chain enhancement, the integral role of explainable artificial intelligence in smart farming and smart cities with the industrial Internet of Things integration.

Features:

Discusses local interpretable model-agnostic explanations, and Shapley additive explanations for transparent data analysis, modeling, and prediction
Highlights the importance of using artificial intelligence (AI) in optimizing processes by studying decision-making interpretability in supply chain optimization
Explains the use of explainable artificial intelligence to optimize supply chains by predicting demand, identifying bottlenecks, and making informed decisions about inventory management
Illustrates the benefit of employing explainable artificial intelligence in optimizing resource utilization, improving decision-making, and creating more efficient and sustainable ecosystems
Explores the integration of explainable artificial intelligence into smart appliances to provide insights into their operations and improve user experience

It is primarily written for senior undergraduates, graduate students, and academic researchers in the fields of electrical engineering, electrical and communications engineering, computer science and engineering, and information technology.

Contents

Chapter 1. Enhancing substation maintenance and anomaly detection through Image processing, Explainable AI and Industrial Internet of Things (IIOT). Chapter 2. Real-time cardiovascular health monitoring using ECG, ML models, and Interpretation using Explainable AI methods (LIME & SHAP) within IIoT systems. Chapter 3. Enhancing Brain Tumor Detection and Classification with Vision Transformers, Ensemble Models, and Explainable AI in an Industrial IoT Framework. Chapter 4. Advancements and Applications of Explainable Artificial Intelligence (XAI) in Smart Cities: Enhancing User Perception, Decision-Making, and Behavioral Insights. Chapter 5. Amplifying Song Clustering with Explainable AI and Hybrid Deep Learning for Industrial IoT Applications in Music Recommendation Systems. Chapter 6. Predicting e-mental health using machine learning models and explainable AI (XAI) methods with IoT devices involves. Chapter 7. Automatic detection of heart disease with IIOT and enhanced explainable (EXAI)approach. Chapter 8. Explainable AI & its Contributions to Smart Cities, Smart Homes, and eHealth. Chapter 9. EFL Lecturers' and Students' Academic Writing Experience and Challenges in Using Explainable AI and Industrial Internet of Things (IIoT) Writing Tools: A Qualitative Study. Chapter 10. Designing Trustworthy IIIOT Intrusion Prevention Systems Using Explainable AI Techniques. Chapter 11. Leveraging Explainable AI for Threat Detection in Industrial IIOT-Based Intrusion Prevention Systems. Chapter 12. Hybrid Ensemble Optimisation and Explainable AI for Robust IIoT Decision-Making. Chapter 13. Transparent and Reliable AI for Real-Time Facial Expression Recognition in IIoT and Healthcare. Chapter 14. Brain Tumor Classification Integrating Deep Learning, Explainable AI and Industrial IOT (IIOT) With GRAD-CAM For Bio-Medical Images.Chapter 15. DepressNet-HO: An Explainable AI Framework for Depression Detection in IIoT Applications

最近チェックした商品