Controlling Privacy and the Use of Data Assets Set (Security, Audit and Leadership Series)

個数:

Controlling Privacy and the Use of Data Assets Set (Security, Audit and Leadership Series)

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • ページ数 660 p.
  • 言語 ENG
  • 商品コード 9781032875453
  • DDC分類 006.312

Full Description

"Ulf Mattsson leverages his decades of experience as a CTO and security expert to show how companies can achieve data compliance without sacrificing operability."

Jim Ambrosini, CISSP, CRISC, Cybersecurity Consultant and Virtual CISO

"Ulf Mattsson lays out not just the rationale for accountable data governance, he provides clear strategies and tactics that every business leader should know and put into practice. As individuals, citizens and employees, we should all take heart that following his sound thinking can provide us all with a better future."

Richard Purcell, CEO Corporate Privacy Group and former Microsoft Chief Privacy Officer

Many security experts excel at working with traditional technologies but fall apart in utilizing newer data privacy techniques to balance compliance requirements and the business utility of data. This book will help readers grow out of a siloed mentality and into an enterprise risk management approach to regulatory compliance and technical roles, including technical data privacy and security issues.

These books use practical lessons learned in applying real-life concepts and tools to help security leaders and their teams craft and implement strategies. These projects deal with a variety of use cases and data types. A common goal is to find the right balance between compliance, privacy requirements, and the business utility of data.

These books review how new and old privacy-preserving techniques can provide practical protection for data in transit, use, and rest. It positions techniques like pseudonymization, anonymization, tokenization, homomorphic encryption, dynamic masking, and more.

Contents

Controlling Privacy and the Use of Data Assets - Volume 1

Introduction, Acknowledgments. About the Author. SECTION I Introduction and Vision. Chapter 1 Privacy, Risks, and Threats. Chapter 2 Trends and Evolution. Chapter 3 Best Practices, Roadmap, and Vision. SECTION II Data Confidentiality and Integrity. Chapter 4 Computing on Encrypted Data. Chapter 5 Reversible Data Protection Techniques. Chapter 6 Non-Reversible Data Protection Techniques. SECTION III Users and Authorization. Chapter 7 Access Control. Chapter 8 Zero Trust Architecture. SECTION IV Applications. Chapter 9 Applications, APIs, and Privacy by Design. Chapter 10 Machine Learning and Analytics. Chapter 11 Secure Multiparty Computing. Chapter 12 Encryption and Tokenization of International Unicode Data. Chapter 13 Blockchain and Data Lineage. SECTION V Platforms. Chapter 14 Hybrid Cloud, CASB, and SASE. Chapter 15 HSM, TPM, and Trusted Execution Environments. Chapter 16 Internet of Things. Chapter 17 Quantum Computing. Chapter 18 Summary. Appendix A Standards and Regulations. Appendix B Governance, Guidance, and Frameworks. Appendix C Data Discovery and Search. Appendix D Digital Commerce, Gamification, and AI. Appendix E Innovation and Products. Appendix F Glossary. Index.

Controlling Privacy and the Use of Data Assets - Volume 2

Foreword - Ben Rothke, CISSP, CISM, Senior Information Security Manager, Tapad, Inc. New York, NY. Foreword - Jim Ambrosini, CISA, CRISC, CISSP Cybersecurity Consultant and CISO. Foreword - Richard Purcell, CEO, Corporate Privacy Group (former Chief Privacy. Officer, Microsoft). Acknowledgments. About the Author. Introduction. SECTION I Vision and Best Practices. Chapter 1 Risks and Threats. Chapter 2 Opportunities. Chapter 3 Best Practices. Chapter 4 Vision and Roadmap. SECTION II Trust and Hybrid Cloud. Chapter 5 Zero Trust and Hybrid Cloud. Chapter 6 Data Protection for Hybrid Cloud. Chapter 7 Web 3.0 and Data Security. SECTION III Data Quality. Chapter 8 Metadata and the Provenance of Data. Chapter 9 Data Security and Quality. Chapter 10 Analytics, Data Lakes, and Federated Learning. Chapter 11 Summary. Glossary. Appendix A: The 2030 Environment. Appendix B: Synthetic Data and Differential Privacy. Appendix C: API Security. Appendix D: Blockchain Architecture and Zero-Knowledge Proof. Appendix E: Data Governance Tools. Index.

最近チェックした商品