Fault Diagnosis for Electric Power Systems and Electric Vehicles

個数:

Fault Diagnosis for Electric Power Systems and Electric Vehicles

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 238 p.
  • 言語 ENG
  • 商品コード 9781032864518
  • DDC分類 621.31

Full Description

The present monograph offers a detailed and in-depth analysis of the topic of fault diagnosis for electric power systems and electric vehicles. It explores both model-based and model-free techniques for fault diagnosis and provides a solution for the problem of control of the marine-turbine and synchronous-generator unit and Fault diagnosis of the marine turbine and synchronous-generator unit. Additionally, it introduces innovative approaches for diagnosing faults in electricity microgrids and gas processing units.The new fault detection and isolation methods with statistical procedures for defining fault thresholds enable early fault diagnosis and reveal incipient changes in the parameters of the monitored systems.

Key Features:

Analyzes model-based fault detection and isolation methods. Known models about the dynamics of the monitored system are used by nonlinear state observers and Kalman Filters, which emulate the system's fault-free condition
Analyzes model-free fault detection and isolation methods. Raw data are processed by neural networks and nonlinear regressors to generate models that emulate the fault-free condition of the monitored system
Utilizes statistical tests based on residual processing, which compare outputs from the monitored system to those of a fault-free model, providing objective and highly reliable criteria for identifying failures
Enables early fault diagnosis through new detection and isolation methods that use statistical procedures for defining fault thresholds, effectively revealing incipient changes in the parameters of monitored systems

Contents

Preface
Author
Chapter 1 Fault diagnosis with model-based and model-free techniques
Chapter 2 Fault diagnosis for SG-based renewable energy systems
Chapter 3 Fault diagnosis for electricity microgrids and gas processing
units
Chapter 4 Fault diagnosis for gas and steam-turbine power generation
units
Chapter 5 Fault diagnosis for wind power units and the distribution grid
References
Index

最近チェックした商品