What Every Engineer Should Know about Artificial Intelligence and Big Data (What Every Engineer Should Know)

個数:
  • 予約

What Every Engineer Should Know about Artificial Intelligence and Big Data (What Every Engineer Should Know)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 280 p.
  • 言語 ENG
  • 商品コード 9781032829852

Full Description

Recognizing the vast potential in analyzing big data through machine learning (ML) and artificial intelligence (AI) technologies, companies are acknowledging these technologies as essential for maintaining relevance. A prevailing trend is emerging towards the adoption of distributed open-source computing for storing big data assets and performing advanced ML/AI analytics to predict future trends and risks for businesses. This book offers readers an overview of the essentials of big data and ML/AI, while acknowledging that the field is extensive and evolving. Rather than focusing on theory, the book shares real-life experiences building AI and big data analytics systems of value to practitioners.

• Features practical case studies on building big data and AI models for large scale enterprise solutions.

• Discusses the use of design patterns for architecting AI that are safe, secure, and testable.

• Covers an array of concepts including deep big data analytics, natural language processing, transformer architecture and evolution of ChatGPT, swarm intelligence, and genetic programming.

Informed by the authors' many years of teaching ML, AI, and working on predictive data analytics/AI projects, this book is suitable for use by graduates, professionals, and researchers within the field of data science and engineers and scientists interested in learning more about these essential technologies.

Contents

0. Front Matter. Part I. Foundations & Platforms, Automation & Data Quality at Scale. 1. Fundamental concepts in AI. 2. Big Data and Artificial Intelligence Systems. 3. Architecting Big Data pipelines. 4. Big Data Frameworks and Data Cleaning Strategies. 5. Building Automated Pipelines for Data Cleaning. Part II. Optimization & Search. 6. Swarm Intelligence. 7. Genetic Programming. Part III. Learning Systems. 8. Foundations on Machine Learning and Artificial Learning. 9. Reinforcement Learning. 10. Deep Reinforcement Learning. 11. Natural Language Modelling. 12. Transformer Architecture and Evolution of LLM's. Part IV. Systems in the Real World. 13. Architecting Distributed AI Systems using Design Patterns. 14. Securing AI Systems. 15. AI System Safety in Practice. 16. Testing Strategies for AI Applications. End Matter. Answer Keys for Chapter Questions.

最近チェックした商品