Exploratory Data Analysis Using R (Chapman & Hall/crc Data Mining and Knowledge Discovery Series) (2ND)

個数:
  • 予約

Exploratory Data Analysis Using R (Chapman & Hall/crc Data Mining and Knowledge Discovery Series) (2ND)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 592 p.
  • 言語 ENG
  • 商品コード 9781032814803

Full Description

Exploratory Data Analysis Using R provides a classroom-tested introduction to exploratory data analysis (EDA), and this revised edition is accompanied by the R package ExploreTheData that implements many of the approaches described. As before, the primary focus of the book is on identifying "interesting" features - good, bad, and ugly - in a dataset, why it is important to find them, how to treat them, and more generally, the use of R to explore and explain datasets and the analysis results derived from them.

The book begins with a brief overview of exploratory data analysis using R, followed by a detailed discussion of creating various graphical data summaries in R. Then comes a thorough introduction to exploratory data analysis, and a detailed treatment of 13 data anomalies, why they are important, how to find them, and some options for addressing them. Subsequent chapters introduce the mechanics of working with external data, structured query language (SQL) for interacting with relational databases, linear regression analysis (the simplest and historically most important class of predictive models), and crafting data stories to explain our results to others. These chapters use R as an interactive data analysis platform, while Chapter 9 turns to writing programs in R, focusing on creating custom functions that can greatly simplify repetitive analysis tasks. Further chapters expand the scope to more advanced topics and techniques: special considerations for working with text data, a second look at exploratory data analysis, and more general predictive models.

The book is designed for both advanced undergraduate, entry-level graduate students, and working professionals with little to no prior exposure to data analysis, modeling, statistics, or programming. It keeps the treatment relatively non-mathematical, even though data analysis is an inherently mathematical subject. Exercises are included at the end of most chapters, and an instructor's solution manual is available.

Contents

1. Data, Exploratory Analysis, and R 2. Graphics in R 3. Exploratory Data Analysis: A First Look 4. Thirteen Important Data
Anomalies 5. Working with External Data 6. SQL and Relational Databases 7. Linear Regression Models 8. Crafting Data Stories 9. Programming in R 10. Working with Text Data 11. Exploratory Data Analysis: A Second Look 12. More General Predictive Models

最近チェックした商品