半導体材料のための機械学習<br>Machine Learning for Semiconductor Materials (Emerging Materials and Technologies)

個数:

半導体材料のための機械学習
Machine Learning for Semiconductor Materials (Emerging Materials and Technologies)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 208 p.
  • 言語 ENG
  • 商品コード 9781032796888
  • DDC分類 621.38152

Full Description

Machine Learning for Semiconductor Materials studies recent techniques and methods of machine learning to mitigate the use of technology computer-aided design (TCAD). It provides various algorithms of machine learning, such as regression, decision tree, support vector machine, K-means clustering and so forth. This book also highlights semiconductor materials and their uses in multi-gate devices and the analog and radio-frequency (RF) behaviours of semiconductor devices with different materials.

Features:

Focuses on semiconductor materials and the use of machine learning to facilitate understanding and decision-making
Covers RF and noise analysis to formulate the frequency behaviour of semiconductor devices at high frequency
Explores pertinent biomolecule detection methods
Reviews recent methods in the field of machine learning for semiconductor materials with real-life applications
Examines the limitations of existing semiconductor materials and steps to overcome the limitations of existing TCAD software

This book is aimed at researchers and graduate students in semiconductor materials, machine learning and electrical engineering.

Contents

1. Semiconductor Materials: Current Applications and Limitations of Advanced Semiconductor Devices 2. Machine Learning: Introduction and Features 3. Fault Detection in Semiconductor Manufacturing: A Classification Analysis of the SECOM Dataset 4. Predictive Modelling for Yield Enhancement 5. Deep Learning for Image Classification in Semiconductor Inspection 6. Machine Learning for Semiconductor Devices 7. Numerical Simulation-Based Biosensing Performance Exploration of a Cylindrical BioFET Using Machine Learning 8. Semiconductor Materials for EV and Renewable Energy 9. Performance Comparison of Vertical TFET Using Triple Metal Gate Structures and Insights of Machine Learning Approach: A Comprehensive Study 10. Design and Performance Exploration of Macaroni Channel-Based Ge/Si Interfaced Nanowire FET for Analog and High-Frequency Applications Using Machine Learning

最近チェックした商品