Classical and Modern Optimization Techniques Applied to Control and Modeling

個数:

Classical and Modern Optimization Techniques Applied to Control and Modeling

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 354 p.
  • 言語 ENG
  • 商品コード 9781032785110
  • DDC分類 629.8

Full Description

The book presents a detailed and unified treatment of the theory and applications of optimization applied to control and modeling, focusing on nature-inspired optimization algorithms to optimally tune the parameters of linear and nonlinear controllers and models, with emphasis on tower crane systems and other representative applications.

Classical and Modern Optimization Techniques Applied to Control and Modeling combines classical and modern approaches to optimization, based on the authors' experience in the field, and presents in a unified structure the essential aspects of optimization in control and modeling from a control engineer's point of view. It covers linear and nonlinear controllers, and neural networks based on reinforcement learning are considered and analyzed because of the need to reduce the complexity of the controllers and their design so that they can be practical to implement as low-cost automation solutions. The chapters are designed to quickly make the concepts of optimization, control, reinforcement learning, and neural networks understandable to readers with limited experience.

This book is intended for a broad audience, including undergraduate and graduate students, engineers (designers, practitioners, and researchers), and anyone facing challenging control problems.

Contents

Chapter 1- Introduction

Chapter 2- One-step Optimization

Chapter 3- Discrete-time Optimization

Chapter 4- Numerical Solving of Optimization Problems

Chapter 5- Metaheuristic Optimization Algorithms

Chapter 6- Optimization Algorithms in Artificial Neural Network Training

Chapter 7- Introduction to Data Mining

Chapter 8- Reinforcement Learning Applied to Optimal Control

最近チェックした商品