Advancing VLSI through Machine Learning : Innovations and Research Perspectives (Materials, Devices, and Circuits)

個数:

Advancing VLSI through Machine Learning : Innovations and Research Perspectives (Materials, Devices, and Circuits)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 254 p.
  • 言語 ENG
  • 商品コード 9781032774282
  • DDC分類 621.395

Full Description

This book explores the synergy between very large-scale integration (VLSI) and machine learning (ML) and its applications across various domains. It investigates how ML techniques can enhance the design and testing of VLSI circuits, improve power efficiency, optimize layouts, and enable novel architectures.

This book bridges the gap between VLSI and ML, showcasing the potential of this integration in creating innovative electronic systems, advancing computing capabilities, and paving the way for a new era of intelligent devices and technologies. Additionally, it covers how VLSI technologies can accelerate ML algorithms, enabling more efficient and powerful data processing and inference engines. It explores both hardware and software aspects, covering topics like hardware accelerators, custom hardware for specific ML tasks, and ML-driven optimization techniques for chip design and testing.

This book will be helpful for academicians, researchers, postgraduate students, and those working in ML-driven VLSI.

Contents

Chapter 1. Optimizing Circuit Synthesis: Integrating Neural Networks and Evolutionary Algorithms for Increased Design Efficiency

Chapter 2. Study of Physical Processes Analysis and Phenomena of Insights of Trapping in the Performance Degradation in AlGaN/GaN HEMTs

Chapter 3. Framework for Design and Performance Evaluation of Memory using Memristor

Chapter 4. Innovative Design and Optimization of High-Power Amplifiers: A Comparative Study with GaN HEMT and CMOS Technologies

Chapter 5. Exploring FPGA Architecture Designs for Matrix Multiplication in Machine Learning

Chapter 6. Silicon Chip Design and Testing

Chapter 7. A Novel Deep Learning Approach for Early Brain Tumour Detection

Chapter 8. TCAD Augmented Machine Learning for the Prediction of Device Behavior and Failure Analysis

Chapter 9. Opportunities and Challenges for ML-Based FPGA Backend Flow

Chapter 10. Role of Machine Learning Applications in VLSI Design

Chapter 11. Application of Artificial Intelligence/Machine Learning in VLSI Design

Chapter 12. FinFET-Based 9T SRAM for Enhanced Performance in AI/ML Applications

Chapter 13. Power Consumption and SNM Analysis of 6T and 7T SRAM using 90nm Technology

Chapter 14. Transforming Electronics: An Extensive Analysis of Hyper-FET Technological Developments and Utilisation

Chapter 15. VLSI Realization of Smart Systems using Blockchain and Fog Computing

最近チェックした商品