入門固体化学(テキスト・第6版)<br>Solid State Chemistry : An Introduction (6TH)

個数:

入門固体化学(テキスト・第6版)
Solid State Chemistry : An Introduction (6TH)

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 395 p.
  • 言語 ENG
  • 商品コード 9781032728872
  • DDC分類 541.0421

Full Description

Solid State Chemistry: An Introduction 6th Edition is a fully revised edition of one of our most successful textbooks with at least 20% new information and new images of crystal structures.

Solid-state chemistry is still a rapidly advancing field, contributing to areas such as batteries for transport and energy storage, nanostructured materials and porous materials for the capture of carbon dioxide and other pollutants.
This edition aims, as previously, not only to teach the basic science that underpins the subject but also to direct the reader to the most modern techniques and to expanding and new areas of research. The user-friendly style takes a largely non-mathematical approach and gives practical examples of applications of solid-state materials and concepts.
The chapter on sustainability written by an expert in the field has been updated, and examples of the relevance of solid-state chemistry to sustainability are used throughout. The chapter on batteries has been extended to include fuel cells.
Other new topics in this edition include X-ray-free electron laser crystallography and thermal properties of materials.
A companion website offering accessible resources for students and instructors alike, featuring topics and tools such as quizzes, videos, web links and more has been provided for this edition.

Contents

Chapter 1 - An Introduction to Crystal Structures

Jennifer E. Readman and Lesley E. Smart

1.1 Introduction

1.2 Close packing

1.3 Body-centred and Primitive Structures

1.4 Lattices and Unit Cells

1.4.1 Lattices

1.4.2 One- and Two- Dimensional Unit Cells

1.4.3 Three-Dimensional Lattices and Their Unit Cells

1.5 Crystalline solids

1.5.1 Unit cell stoichiometry and Fractional Coordinates

1.5.2 Ionic Solids with Formula MX

1.5.2.1 Caesium Chloride

1.5.2.2 Sodium Chloride

1.5.2.3 Zinc Blende & Wurtzite

1.5.2.4 Nickel Arsenide

1.5.3 Solids with General Formula MX2

1.5.3.1 Fluorite and Anti-Fluorite

1.5.3.2 Cadmium Chloride and Cadmium Iodide

1.5.3.3 Rutile

1.5.3.4 -Cristobalite

1.5.4 Other Important Crystal Structures

1.5.4.1 Rhenium trioxide

1.5.4.2 Perovskite

1.5.4.3 Spinel and Inverse Spinel

1.5.5 Miscellaneous Oxides

1.6 Ionic Radii and the Radius Ratio Rule

1.7 Extended Covalent Arrays

1.8 Molecular Structures

1.9 Lattice Energy

1.9.1 Born-Haber Cycle

1.9.2 Calculating Lattice Enthalpies

1.9.3 Calculations Using Thermodynamic Cycles and Lattice Energies

1.10 Symmetry

1.10.1 Symmetry Notation

1.10.2 Axes of Symmetry

1.10.3 Planes of Symmetry

1.10.4 Inversion

1.10.5 Inversion Axes, Improper Symmetry Axes, and the Identity Element

1.10.6 Operations

1.10.7 Symmetry in Crystals

1.10.8 Translational Symmetry Elements

1.10.9 Space groups

1.11 Miller Indices and Interplanar spacing

1.12 Quasicrystals

Summary.

Questions

Chapter 2 Scattering Techniques for Characterising Solids

Jennifer E. Readman

2.1 Introduction

2.2 X-ray Diffraction

2.2.1 The Generation of X-rays

2.2.2 Scattering of X-rays & Bragg's Law

2.2.3 The Diffraction Experiment

2.2.4 The Powder Diffraction Pattern

2.2.5 The Intensity of Diffracted Peaks

2.2.6 The Width of Diffracted Peaks

2.2.7 Rietveld Refinement

2.2.8 Structure & Single-Crystal Diffraction solution

2.3 Synchrotron Radiation

2.3.1 Introduction

2.3.2 Generation of Synchrotron X-rays

2.3.3 Bending Magnets and Insertion Devices

2.4 Neutron Diffraction

2.4.1 Background & Production of Neutrons

2.4.2 Neutron scattering

2.4.3 Experimental Neutron Diffraction

2.4.4 Magnetic Scattering

2.5 Pair Distribution Function Analysis (PDF)

2.5.1 Introduction

2.5.2 Theoretical background

2.5.3 The Total Scattering Experiment

2.6 In-situ Experiments

2.6.1 Variable Temperature

2.6.2 Variable Pressure

2.7 Free Electron Lasers (XFELs)

2.7.1 Introduction

2.7.2 How XFEL X-rays Are Generated

2.7.3 Typical XFEL Experiments

Appendix Allowed reflections for simple cubic cells

Questions

Chapter 3 - Non-Scattering Characterisation Techniques

Jennifer E. Readman

3.1 Introduction

3.2 Electron Microscopy

3.2.1 Scanning Electron Microscopy (SEM}

3.2.2 Transmission Electron Microscopy (TEM)

3.2.3 Electron Diffraction (ED)

3.2.4 Scanning Transmission Electron Microscopy (STEM)

3.2.5 Energy Dispersive X-Ray Analysis (EDS / EDX)

3.2.6 Electron Energy Loss Spectroscopy (EELS)

3.2.7 Scanning Tunnelling Microscopy (STM) & Atomic Force Microscopy (AFM)

3.3 X-ray Spectroscopy

3.3.1 Introduction

3.3.2 X-ray Fluorescence Spectroscopy (XRF)

3.3.3 X-ray Absorption Spectroscopy

3.3.4 EXAFS

3.3.5 XANES

3.3.6 Experimental XAS

3.3.7 X-ray Photoelectron Spectroscopy (XPS)

3.4 Solid State NMR

3.4.1 Introduction

3.4.2 29-Si MAS NMR

3.4.3 Quadrupolar nuclei

3.5 Surface Area Measurements

3.5.1 Gas Adsorption Isotherms

3.5.2 Classification of Isotherms

3.6 Thermal Analysis

3.6.1 Thermogravimetric analysis (TGA)

3.6.2 Differential Thermal Analysis (DTA)

3.6.3 Differential Scanning Calorimetry (DSC)

3.6.4 Temperature Programmed Reduction (TPR) & Temperature Programmed Desorption (TPD)

Summary for chapters 2 and 3,

Questions

Chapter 4 Synthesis

Elaine A. Moore and Lesley E. Smart

4.1 Introduction

4.2 High-Temperature Ceramic Methods

4.2.1 Direct Heating of Solids

4.2.2 Precursor Methods

4.2.3 Sol-Gel Methods

4.3. High-Pressure Methods

4.3.1. Using High-Pressure Gases

4.3.2. Using Hydrostatic Pressures

4.4. Chemical Vapour Deposition

4.4.1. Preparation of Semiconductors

4.4.2. Diamond Films

4.4.3 Optical Fibres

4.5. Preparing Single Crystals

4.5.1 Epitaxy Methods

4.5.2 Chemical Vapour Transport

4.5.3. Melt Methods

4.5.4 Solution Methods

4.6. Intercalation

4.7. Green Chemistry

4.7.1. Mechanochemical Synthesis

4.7.2. Microwave Synthesis

4.7.3. Hydrothermal Methods

4.7.4. Ultrasound-assisted synthesis

4.7.5 Biological-related methods

4.7. 6. Barium Titanate

4.8. Choosing a Method

Chapter 5 Solids:Bonding and Electronic Properties

Elaine A. Moore and Neil Allan

5.2. Bonding in Solids: Free electron theory

5.2.1. Electronic conductivity

5.1 Introduction

5.3. Bonding in Solids: Molecular Orbital Theory

5.3.1. Simple Metals

5.3.2. Group 14 elements

5.4. Semiconductors

5.4.1. Photoconductivity

5.4.2. Doped Semiconductors

5.5. p-n junction and field effect transistors

5.5.1. Flash Memory

5.6. Bands in compounds: Gallium Arsenide

5.7. Bands in d-block compounds: transition metal monoxides

5.8. Superconductivity

5.8.1. BCS Theory of superconductivity

5.8.2. High temperature superconductors: cuprates

5.8.3. Iron superconductors

5.9. Summary

Questions

Chapter 6 Defects and Non-stoichiometry

Elaine A. Moore and Lesley E. Smart

6.1. Introduction

6.2 Point Defects and Their Concentration

6.2.1 Intrinsic Defects

6.2.2 Concentration of Defects

6.2.3 Extrinsic Defects

6.2.4 Defect Nomenclature

6.3 Nonstoichiometric Compounds

6.3.1 Nonstoichiometry in Wüstite (FeO) and MO-Type Oxides

6.3.2 Uranium Dioxide

6.3.3 Titanium Monoxide Structure

6.4 Extended Defects

6.4.1 Crystallographic shear

6.4.2 Planar Intergrowths

6.4.3 Block Structures

6.4.4 Pentagonal Columns

6.4.5 Infinitely Adaptive Structures

6.5 Properties of Nonstoichiometric Oxides

6.5.1. Transition metal monoxides

6.6 Summary

Questions

Chapter 7 Batteries and Fuel Cells

Elaine A. Moore and Lesley E. Smart

7.1. Introduction

7.2. Ionic conductivity in solids

7.3. Solid electrolytes

7.3.1 Silver-ion conductors

7.3.2. Lithium-ion conductors

7.3.3. Sodium-ion conductors

7.3.4. Oxide-ion conductors

7.4. Lithium-based batteries

7.5. Sodium-based batteries

7.6. Fuel cells

7.6.1. Solid oxide fuel cells

7.6.2. Proton Exchange Membrane cells

7.7. Summary

Questions

Chapter 8 Microporous and Mesoporous solids

Jennifer E. Readman (and Lesley E. Smart ?)

8.1. Introduction

8.2 Silicates

8.3. Zeolites

8.3.1. Background

8.3.2. Composition and Structure of Zeolites.

8.3.3. Zeolite Nomenclature

8.3.4. Si/Al ratios in Zeolites

8.3.5. Exchangeable Cations

8.3.6 Synthesis of Zeolites

8.3.7. Uses of Zeolites

8.4. Zeotypes

8.4.1. Aluminophosphates

8.4.2. Mixed Coordination Metallosilicates

8.5. Metal-Organic Frameworks (MOFs)

8.5.1. Composition and Structure of MOFs

8.5.2. Example MOF Structures

8.5.3. Breathing MOFs

8.5.4. Synthesis of MOFs

8.5.5. Applications of MOFs

8.6. Zeolite-like MOFs

8.7. Covalent Organic Frameworks

8.8. Mesoporous Silicas

8.9. Clays

Summary

Questions

Chapter Optical 9 and Thermal Properties of Solids

Elaine A. Moore

9.1 Introduction

9.2. Interaction of Light with atoms

9.2.1. Ruby Laser

9.2.2. Phosphors for LEDs

9.3. Colour Centres

9.4. Absorption and Emission of Radiation in Continuous Solids

9.4.1. Gallium Arsenide Laser

9.4.2. Quantum Wells: Blue laser

9.4.3. Light emitting diodes (LEDs)

9.4.4. Photovoltaic (Solar) Cells

9.5. Carbon-based conducting polymers

9.5.1. Polyacetylene

9.5.2. Bonding in Polyacetylene and related polymers

9.5.3 Organic LEDs (QLEDs)

9.6. Refraction

9.6.1. Calcite

9.6.2. Optical Fibres

9.7. Photonic crystals

9.8. Thermal properties of Materials

9.8.1 Heat Capacity

9.8.2. Thermal Energy Storage

9.8.3. Thermal Expansion

9.8.4. Thermal conductivity

9.8.5 Thermal devices

9.9 Summary

Questions

Chapter 10 Magnetic and Electrical Properties

Elaine A. Moore

10.1. Introduction

10.2. Magnetic Susceptibility

10.3. Paramagnetism in metal complexes

10.4. Ferromagnetic Metals

10.4.1. Magnetic Domains

10.4.2 Permanent magnets

10.4.3 Magnetic Shielding

10.5. Ferromagnetic compounds: chromium dioxide

10.6. Antiferromagnetism: transition metal monoxides

10.7. Ferrimagnetism: ferrites

10.7.1. Magnetic strips on swipe cards

10.8. Spiral Magnetism

10.9 Giant, Tunneling and colossal magnetoresistance

10.9.1 Giant Magnetoresistance

10.9.2. Tunneling Magnetoresistance

10.9.3 Car steering angle sensors

10.9.4 Colossal Magnetoresistance: manganites

10.10 Magnetic properties of superconductors

10.11 Electrical Polarisation

10.12. Piezoelectric crystals A-Quartz

10.13 Ferroelectric effect

10.13.1. Capacitors

10.14. Multiferroics

10.14.1. Type 1 multiferroics:bismuth ferrite

10.14.2. Type 2 multiferroics: terbium manganite

10.15. Summary

Questions

Chapter 11 Nanostructures

Elaine A. Moore and Lesley E. Smart

11.1. Introduction

11.2. Consequences of the nanoscale

11.2.1. Nanoparticle morphology

11.2.2. Mechanical Properties

11.2.3 Melting temperature

11.2.4. Electronic properties

11.2.5. Optical Properties

11.2.6 Magnetic Properties

11.3. Nanostructural Carbon

11.3.1. Carbon Black

11.3.2. Graphene

11.3.3. Graphene Oxide

11.3.4. Buckminsterfullerene

11.3.5. Carbon nanotubes

11.4. Noncarbon nanostructures

11.4.1 Fumed Silica

11.4.2. Metal nanoparticles

11.4.3. Non-carbon -ene structures

11.4.4. Other non-carbon nanostructures

11.5. Synthesis of nanostructures

11.5.1 Top-down methods

11.5.2. Bottom-up methods

11.5.3 Synthesis using templates

11.6. Nanostructures in health

11.7. Safety

11.8 Summary

Questions

Chapter 12 Sustainability

Mary Anne White

12.1. Introduction

12.1.1 Definition of Materials Sustainability

12.1.2 Sustainable Materials Chemistry Goals

12.1.3 Materials Dependence in Society

12.1.4 Elemental Abundances

12.1.5 Solid State Chemistry's Role in Sustainability

12.1.6 Material Life Cycle

12.2 Tools for Sustainable Approaches

12.2.1 Green Chemistry

12.2.2 Herfindahl-Hirschman Index (HHI)

12.2.3 Embodied Energy

12.2.4 Exergy

12.2.5 Life Cycle Assessment

12.3 Case Study: Sustainability of a Smartphone

12.4 Theoretical Approaches

12.5 Summary

Questions

最近チェックした商品