Handbook of Texture Analysis : Generalized Texture for AI-Based Industrial Applications

個数:
  • 予約

Handbook of Texture Analysis : Generalized Texture for AI-Based Industrial Applications

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 204 p.
  • 言語 ENG
  • 商品コード 9781032727424
  • DDC分類 610.28

Full Description

The major goals of texture research in computer vision are to understand, model, and process texture, and ultimately, to simulate the human visual learning process using computer technologies. In the last decade, artificial intelligence has been revolutionized by machine learning and big data approaches, outperforming human prediction on a wide range of problems. In particular, deep learning convolutional neural networks (CNNs) are particularly well suited to texture analysis.

This book examines four major application domains related to texture analysis and their relationship to AI-based industrial applications: texture classification, texture segmentation, shape from texture, and texture synthesis. This volume:

Discusses texture-based segmentation for extracting image shape features, modeling and segmentation of noisy and textured images, spatially constrained color-texture model for image segmentation, and texture segmentation using Gabor filters
Examines textural features for image classification, a statistical approach for classification, texture classification from random features, and applications of texture classifications
Describes shape from texture, including general principles, 3D shapes, and equations for recovering shape from texture
Surveys texture modeling, including extraction based on Hough transformation and cycle detection, image quilting, gray level run lengths, and use of Markov random fields

Aimed at researchers, academics, and advanced students in biomedical engineering, image analysis, cognitive science, and computer science and engineering, this is an essential reference for those looking to advance their understanding in this applied and emergent field.

Contents

1 Texture Analysis in Neuroradiology 2 Information Theoretic Entropy Approaches and Their Applications to Texture Analysis 3 Texture Analysis in Chronic Liver Diseases 4 Role of Texture Analysis in the Clinical Management of Focal Liver Lesions 5 Texture Analysis in Abdominal Imaging 6 Texture Modeling in Optical Coherence Tomography Images 7 Texture Analysis in Thoracic Imaging 8 Applications of Texture Analysis in Prostate Cancer 9 Texture Analysis for Breast Ultrasound Using Conventional Method and Deep Learning 10 Texture Analysis and Machine Learning on MRI for the Quality Evaluation of Meat Products 11 Comparison of Image Processing Techniques with Supervised Machine Learning vs. Deep Learning Based on Texture Analysis to Detect Powdery Mildew on Strawberry Leaves 12 A Radiomic Features-Based Pipeline for Accurate Bladder Cancer Staging

最近チェックした商品