Multimodal Biometric Identification System : Case Study of Real-Time Implementation

個数:

Multimodal Biometric Identification System : Case Study of Real-Time Implementation

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 132 p.
  • 言語 ENG
  • 商品コード 9781032660585
  • DDC分類 006.4

Full Description

This book presents a novel method of multimodal biometric fusion using a random selection of biometrics, which covers a new method of feature extraction, a new framework of sensor-level and feature-level fusion. Most of the biometric systems presently use unimodal systems, which have several limitations. Multimodal systems can increase the matching accuracy of a recognition system. This monograph shows how the problems of unimodal systems can be dealt with efficiently, and focuses on multimodal biometric identification and sensor-level, feature-level fusion. It discusses fusion in biometric systems to improve performance.

• Presents a random selection of biometrics to ensure that the system is interacting with a live user.

• Offers a compilation of all techniques used for unimodal as well as multimodal biometric identification systems, elaborated with required justification and interpretation with case studies, suitable figures, tables, graphs, and so on.

• Shows that for feature-level fusion using contourlet transform features with LDA for dimension reduction attains more accuracy compared to that of block variance features.

• Includes contribution in feature extraction and pattern recognition for an increase in the accuracy of the system.

• Explains contourlet transform as the best modality-specific feature extraction algorithms for fingerprint, face, and palmprint.

This book is for researchers, scholars, and students of Computer Science, Information Technology, Electronics and Electrical Engineering, Mechanical Engineering, and people working on biometric applications.

Contents

Preface.................................................................................................................... viii

Author Biography........................................................................................................x

Chapter 1 Introduction...........................................................................................1

1.1 Biometric Identification System.................................................1

1.1.1 Enrolment Module........................................................2

1.2 Current Status of Biometric Identification Systems...................3

1.3 Applications of Biometric Systems............................................5

References.............................................................................................5

Chapter 2 An Overview of Biometrics..................................................................6

2.1 Biometrics...................................................................................6

2.1.1 Advantages of Biometrics.............................................7

2.1.2 Disadvantages of Biometrics.........................................8

2.1.3 Types of Biometrics.......................................................8

2.2 Fingerprint..................................................................................8

2.2.1 Minutiae-based Technique............................................9

2.2.2 Correlation-based Technique........................................9

2.2.3 Advantages and Disadvantages of Fingerprint

Biometrics.....................................................................9

2.2.4 Applications of Fingerprinting.................................... 10

2.3 Iris Recognition........................................................................ 10

2.3.1 Advantages of Iris Technology.................................... 10

2.3.2 Disadvantages of Iris Technology............................... 10

2.3.3 Applications of Iris Recognition System..................... 11

2.3.4 Real-Life Applications................................................ 11

2.4 Retinal Pattern Biometrics....................................................... 11

2.4.1 Advantages of Retinal Recognition............................. 12

2.4.2 Disadvantages of Retinal Recognition........................ 12

2.5 Facial Recognition Biometrics................................................. 12

2.5.1 Challenges in Face Recognition.................................. 13

2.5.2 Advantages of Biometric Facial Recognition.............. 13

2.5.3 Disadvantages of Biometric Face Recognition........... 13

2.5.4 Applications................................................................. 13

2.6 Handwriting.............................................................................. 14

2.6.1 Advantages and Disadvantages of Handwriting

Recognition................................................................. 14

2.7 Voice Biometric........................................................................ 14

2.7.1 Advantages.................................................................. 15

2.7.2 Disadvantages.............................................................. 15

2.8 Ear Recognition........................................................................ 15

2.8.1 Advantages.................................................................. 15

2.8.2 Disadvantages.............................................................. 15

2.9 Summary.................................................................................. 16

Chapter 3 Motivation behind Multimodal Biometric Systems............................ 17

3.1 Introduction.............................................................................. 17

3.1.1 Advantages of Multimodal Systems over

Unimodal Systems...................................................... 18

3.2 Multimodal Biometric Integration Architecture...................... 19

3.3 Multimodal Biometric Integration Scenarios........................... 19

3.4 Multimodal Biometric Fusion Levels....................................... 21

3.4.1 Pre-mapping Fusion.................................................... 21

3.4.2 Post-mapping Fusion...................................................25

References...........................................................................................28

Chapter 4 Performance Measurement Parameters for Biometric Systems.......... 31

4.1 Performance Measurement Parameters.................................... 31

4.2 Materials................................................................................... 33

4.2.1 Fingerprint Database...................................................34

4.2.2 Face Database..............................................................34

4.2.3 Hand Database............................................................ 35

4.3 Summary.................................................................................. 35

Reference............................................................................................. 35

Chapter 5 Unimodal Biometric Systems..............................................................36

5.1 Unimodal Biometric Identification System..............................36

5.1.1 DWT Feature Extraction System................................ 37

5.1.2 Gabor Feature Extraction System...............................38

5.1.3 Curvelet Transform.....................................................40

5.1.4 Contourlet Transform.................................................. 41

5.2 Fingerprint as a Biometric Modality........................................ 41

5.2.1 Techniques for Fingerprint Matching......................... 42

5.2.2 Minutiae-Based Feature Extraction System................ 42

5.2.3 Texture-Based Fingerprint Recognition System......... 45

5.3 Face as a Biometric Modality...................................................49

5.3.1 Texture-Based Face Recognition System....................49

5.4 Hand Geometry as a Biometric Modality................................ 51

5.4.1 Hand Geometry Recognition Using 12 Geometry

Features....................................................................... 55

5.4.2 Hand Geometry Recognition Using 21 Geometry

Features.......................................................................56

5.5 Palmprint as a Biometric Modality.......................................... 58

5.5.1 Contourlet Transform..................................................63

Contents vii

5.6 Euclidean Distance as a Classifier............................................ 67

5.7 Summary.................................................................................. 71

References........................................................................................... 71

Chapter 6 Multimodal Biometric Identification Systems Using

Sensor-Level Fusion............................................................................ 72

6.1 Multimodal Biometric Identification System........................... 72

6.2 Sensor-Level Fusion................................................................. 72

6.3 Basic Structure for Sensor-Level Fusion.................................. 73

6.4 Sensor-Level Fusion of Low-Frequency and High-

Frequency Features................................................................... 75

6.5 Sensor-Level Fusion of Low-Frequency Features.................... 78

6.6 Summary.................................................................................. 81

Chapter 7 Multimodal Biometric Identification Systems Using

Feature-Level Fusion...........................................................................82

7.1 Multimodal Biometric System.................................................82

7.2 Feature-Level Fusion Using Block Variance Features.............83

7.2.1 Feature-Level Fusion of 128 Feature Vector...............83

7.2.2 Feature-Level Fusion of 32 Feature Vector.................85

7.2.3 Concatenated Features................................................ 91

7.2.4 Sum Features...............................................................92

7.2.5 Maximum Features.....................................................92

7.2.6 Minimum Features......................................................92

7.3 Feature-Level Fusion Using Contourlet Transform Features...92

7.4 Normalisation Technique for Hand Geometry Features..........95

7.5 Linear Discriminate Analysis (LDA).......................................97

7.6 Summary................................................................................ 100

Chapter 8 Result and Discussion....................................................................... 101

8.1 Result and Discussion............................................................. 101

8.1.1 Databases Used......................................................... 101

8.1.2 Results of Performance Measurement

Parameters of the Biometric Systems....................... 101

8.1.3 Results of Performance Measurement

Parameters of Multimodal Recognition System....... 104

8.1.4 Score Distribution of Biometric System.................... 113

8.1.5 Analysis..................................................................... 120

8.2 Conclusions............................................................................. 122

8.3 Future Scope...........................................................................124

Index....................................................................................................................... 125

最近チェックした商品