Activity, Behavior, and Healthcare Computing (Ubiquitous Computing, Healthcare and Well-being)

個数:

Activity, Behavior, and Healthcare Computing (Ubiquitous Computing, Healthcare and Well-being)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 350 p.
  • 言語 ENG
  • 商品コード 9781032639185
  • DDC分類 610.28

Full Description

Activity, Behavior, and Healthcare Computing relates to the fields of vision and sensor-based human action or activity and behavior analysis and recognition. As well as a series of methodologies, the book includes original methods, exploration of new applications, excellent survey papers, presentations on relevant datasets, challenging applications, ideas and future scopes with guidelines. Featuring contributions from top experts and top research groups globally related to this domain, the book covers action recognition, action understanding, gait analysis, gesture recognition, behavior analysis, emotion and affective computing, healthcare, dementia, nursing, Parkinson's disease, and related areas. It addresses various challenges and aspects of human activity recognition - both in sensor-based and vision-based domains. This is a unique edited book covering both domains in the field of activity and behavior.

Contents

Foreword

Preface

Acknowledgments

About the Editors

Part 1: Activity and Behavior

Chapter 1: PressureTransferNet: Human Attribute Guided Dynamic Ground Pressure Profile Transfer using 3D Simulated Pressure Maps

Chapter 2: SIMUAug: Variability-aware Data Augmentation for Wearable IMU using Physics Simulation

Chapter 3: Estimation of Muscle Activation during Complex Movement using Unsupervised Motion Primitives Decomposition of Limb Kinematics

Chapter 4: Pitcher Identification Method using an Accelerometer and Gyroscope Embedded in a Baseball

Chapter 5: Design and Implementation of a Long-Casting Support System for Lure Fishing using an Accelerometer

Chapter 6: Contrastive Left-Right Wearable Sensors (IMUs) Consistency Matching for HAR

Chapter 7: Estimation Method of Doneness for Boiled Eggs and Diced Steaks using Active Acoustic Sensing

Part 2: Healthcare

Chapter 8: Older Adults Daily Mobility and Its Connection to DEMMI

Chapter 9: Subjective Stress and Heart Rate Variability Patterns: A Study on Harassment Detection

Chapter 10: Analysis of Physiological Variances in Thermal Comfort among Individuals

Chapter 11: Personal Thermal Assessment using Feature Reduction and Machine Learning Techniques

Chapter 12: Analysis of Personal Thermal State using Machine Learning Algorithms to Prevent Heatstroke

Chapter 13: Ensemble Learning Models-Based Prediction of Personal Thermal Assessment Aimed at Heatstroke Prevention

Chapter 14: Predicting Heatstroke Risk and Preventing Health Complications: An Innovative Approach Using Machine Learning and Physiological Data

Chapter 15: Predictive Modeling for Heatstroke Risk Forecasting Integrating Physiological Features Using Ensemble Classifier

Chapter 16: Clustering-Based Feature Selection and Stacked Generalization Method to Offset Imbalanced Data for Thermal Stress Assessment

Chapter 17: Enhancing Personalized Heatstroke Prevention: Forecasting Thermal Comfort Sensations through Data-Driven Models

Chapter 18: Advancing Heatstroke Prevention: Integrating Physiological Data for Enhanced Thermal Comfort Forecasting

Chapter 19: Intrapatient Forecasting of Parkinson's Wearing-Off by Analyzing Data from Wrist-Worn Fitness Tracker and Smartphone

Chapter 20: Foreseeing Wearing-Off State in Parkinson's Disease Patients: A Multimodal Approach with the Usage of Machine Learning and Wearables

Chapter 21: Wearable Technology-Enabled Prediction of Wearing-Off Phenomenon in Parkinson's Disease: A Personalized Approach Using LSTM-Based Time-Series Analysis

Chapter 22: Forecasting Parkinson's Patient's Wearing-Off Periods by Employing Stacked Super Learner

Chapter 23: Forecasting Wearing-Off in Parkinson's Disease: An Ensemble Learning Approach Using Wearable Data

Chapter 24: Forecasting the Wearing-Off Phenomenon in Parkinson's Disease: Summarized Approaches and Insights

最近チェックした商品