Computational Techniques for Biological Sequence Analysis

個数:

Computational Techniques for Biological Sequence Analysis

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 200 p.
  • 言語 ENG
  • 商品コード 9781032630267
  • DDC分類 572.8633

Full Description

This book provides an overview of basic and advanced computational techniques for analyzing and understanding protein, RNA, and DNA sequences. It covers effective computing techniques for DNA and protein classifications, evolutionary and sequence information analysis, evolutionary algorithms, and ensemble algorithms. Furthermore, the book reviews the role of machine learning techniques, artificial intelligence, ensemble learning, and sequence-based features in predicting post-translational modifications in proteins, DNA methylation, and mRNA methylation, along with their functional implications. The book also discusses the prediction of protein-protein and protein-DNA interactions, protein structure, and function using computational methods. It also presents techniques for quantitative analysis of protein-DNA interactions and protein methylation and their involvement in gene regulation. Additionally, the use of nature-inspired algorithms to gain insights into gene regulatory mechanisms and metabolic pathways in human diseases is explored. This book acts as a useful reference for bioinformaticians and computational biologists working in the fields of molecular biology, genomics, and bioinformatics.

Key Features:

Reviews machine learning techniques for DNA sequence classification and protein structure prediction
Discusses genetic algorithms for analyzing multiple sequence alignments and predicting protein-protein interaction sites
Explores computational methods for quantitative analysis of protein-DNA interactions
Examine the role of nature-inspired algorithms in understanding the gene regulation and metabolic pathways
Covers evolutionary algorithms and sequence-based features in predicting post-translational modifications

Contents

About the Editors. Contributors. Chapter 1 Machine Learning and Computational Models for the Prediction of Post-Translational Modification Sites. Chapter 2 Application of Artificial Intelligence in Recognition of Gene Regulation and Metabolic Pathways. Chapter 3 Assessment of Machine Learning Algorithms in DNA Sequence Data Mining. Chapter 4 Efficient Detection and Recuperation of Mental Health using X (Formerly Twitter) and Fitbit Data-Based Recommendation System. Chapter 5 Role of Artificial Intelligence in Detection of Congenital Diseases. Chapter 6 A Hybrid Multi-Level Segmentation-Based Ensemble Classification Model. Chapter 7 Innovative Approaches to Bilirubin Detection. Chapter 8 Targeted Immunization: Application of Machine Learning in Prediction of IL-4 Inducing Peptides. Chapter 9 Healthcare Portal-Django Framework for Healthcare Management System. Chapter 10 Harnessing Machine Learning and Deep Learning for DNA Sequence Analysis. Index.

最近チェックした商品