Modeling Spatio-Temporal Data : Markov Random Fields, Objective Bayes, and Multiscale Models

個数:

Modeling Spatio-Temporal Data : Markov Random Fields, Objective Bayes, and Multiscale Models

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 276 p.
  • 言語 ENG
  • 商品コード 9781032622095
  • DDC分類 519.233

Full Description

Several important topics in spatial and spatio-temporal statistics developed in the last 15 years have not received enough attention in textbooks. Modeling Spatio-Temporal Data: Markov Random Fields, Objectives Bayes, and Multiscale Models aims to fill this gap by providing an overview of a variety of recently proposed approaches for the analysis of spatial and spatio-temporal datasets, including proper Gaussian Markov random fields, dynamic multiscale spatio-temporal models, and objective priors for spatial and spatio-temporal models. The goal is to make these approaches more accessible to practitioners, and to stimulate additional research in these important areas of spatial and spatio-temporal statistics.

Key topics:

Proper Gaussian Markov random fields and their uses as building blocks for spatio-temporal models and multiscale models.
Hierarchical models with intrinsic conditional autoregressive priors for spatial random effects, including reference priors, results on fast computations, and objective Bayes model selection.
Objective priors for state-space models and a new approximate reference prior for a spatio-temporal model with dynamic spatio-temporal random effects.
Spatio-temporal models based on proper Gaussian Markov random fields for Poisson observations.
Dynamic multiscale spatio-temporal thresholding for spatial clustering and data compression.
Multiscale spatio-temporal assimilation of computer model output and monitoring station data.
Dynamic multiscale heteroscedastic multivariate spatio-temporal models.
The M-open multiple optima paradox and some of its practical implications for multiscale modeling.
Ensembles of dynamic multiscale spatio-temporal models for smooth spatio-temporal processes.

The audience for this book are practitioners, researchers, and graduate students in statistics, data science, machine learning, and related fields. Prerequisites for this book are master's-level courses on statistical inference, linear models, and Bayesian statistics. This book can be used as a textbook for a special topics course on spatial and spatio-temporal statistics, as well as supplementary material for graduate courses on spatial and spatio-temporal modeling.

Contents

1. Proper Gaussian Markov Random Fields. 2. Gaussian Spatial Hierarchical Models with ICAR Priors. 3. Objective Priors for Spatio-Temporal Models. 4. Spatio-Temporal Models for Poisson Areal Data. 5. Dynamic Multiscale Spatio-Temporal Thresholding. 6. Multiscale Spatio-Temporal Data Assimilation. 7. Multiscale Heteroscedastic Multivariate Spatio-Temporal Models. 8. A Model Selection Paradox with Implications to Multiscale Modeling. 9. Ensembles of Dynamic Multiscale Spatio-Temporal Models.

最近チェックした商品