普遍的人工知能入門<br>An Introduction to Universal Artificial Intelligence (Chapman & Hall/crc Artificial Intelligence and Robotics Series)

個数:

普遍的人工知能入門
An Introduction to Universal Artificial Intelligence (Chapman & Hall/crc Artificial Intelligence and Robotics Series)

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 516 p.
  • 言語 ENG
  • 商品コード 9781032607023
  • DDC分類 006.3

Full Description

An Introduction to Universal Artificial Intelligence provides the formal underpinning of what it means for an agent to act intelligently in an unknown environment. First presented in Universal Algorithmic Intelligence (Hutter, 2000), UAI offers a framework in which virtually all AI problems can be formulated, and a theory of how to solve them. UAI unifies ideas from sequential decision theory, Bayesian inference, and algorithmic information theory to construct AIXI, an optimal reinforcement learning agent that learns to act optimally in unknown environments. AIXI is the theoretical gold standard for intelligent behavior.

The book covers both the theoretical and practical aspects of UAI. Bayesian updating can be done efficiently with context tree weighting, and planning can be approximated by sampling with Monte Carlo tree search. It provides algorithms for the reader to implement, and experimental results to compare against. These algorithms are used to approximate AIXI. The book ends with a philosophical discussion of Artificial General Intelligence: Can super-intelligent agents even be constructed? Is it inevitable that they will be constructed, and what are the potential consequences?

This text is suitable for late undergraduate students. It provides an extensive chapter to fill in the required mathematics, probability, information, and computability theory background. You can also visit the author website: http://www.hutter1.net/ai/uaibook2.htm.

Contents

Part I: Introduction. 1. Introduction. 2. Background. Part II: Algorithmic Prediction. 3. Bayesian Sequence Prediction. 4. The Context Tree Weighting Algorithm. 5. Variations on CTW. Part III: A Family of Universal Agents. 6. Agency. 7. Universal Artificial Intelligence. 8. Optimality of Universal Agents. 9. Other Universal Agents. 10. Multi-agent Setting. Part IV: Approximating Universal Agents. 11. AIXI-MDP. 12. Monte-Carlo AIXI with Context Tree Weighting. 13. Computational Aspects. Part V: Alternative Approaches. 14. Feature Reinforcement Learning. Part VI: Safety and Discussion. 15. AGI Safety. 16. Philosophy of AI.

最近チェックした商品