グラフと有向グラフ(テキスト・第7版)<br>Graphs & Digraphs (Textbooks in Mathematics) (7TH)

個数:
電子版価格
¥12,002
  • 電子版あり

グラフと有向グラフ(テキスト・第7版)
Graphs & Digraphs (Textbooks in Mathematics) (7TH)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 354 p.
  • 言語 ENG
  • 商品コード 9781032606989
  • DDC分類 511.5

Full Description

Graphs & Digraphs, Seventh Edition masterfully employs student-friendly exposition, clear proofs, abundant examples, and numerous exercises to provide an essential understanding of the concepts, theorems, history, and applications of graph theory. This classic text, widely popular among students and instructors alike for decades, is thoroughly streamlined in this new, seventh edition, to present a text consistent with contemporary expectations.

Changes and updates to this edition include:

A rewrite of four chapters from the ground up
Streamlining by over a third for efficient, comprehensive coverage of graph theory
Flexible structure with foundational Chapters 1-6 and customizable topics in Chapters 7-11
Incorporation of the latest developments in fundamental graph theory
Statements of recent groundbreaking discoveries, even if proofs are beyond scope
Completely reorganized chapters on traversability, connectivity, coloring, and extremal graph theory to reflect recent developments

The text remains the consummate choice for an advanced undergraduate level or introductory graduate-level course exploring the subject's fascinating history, while covering a host of interesting problems and diverse applications. Our major objective is to introduce and treat graph theory as the beautiful area of mathematics we have always found it to be. We have striven to produce a reader-friendly, carefully written book that emphasizes the mathematical theory of graphs, in all their forms. While a certain amount of mathematical maturity, including a solid understanding of proof, is required to appreciate the material, with a small number of exceptions this is the only pre-requisite.

In addition, owing to the exhilarating pace of progress in the field, there have been countless developments in fundamental graph theory ever since the previous edition, and many of these discoveries have been incorporated into the book. Of course, some of the proofs of these results are beyond the scope of the book, in which cases we have only included their statements. In other cases, however, these new results have led us to completely reorganize our presentation. Two examples are the chapters on coloring and extremal graph theory.

Contents

1 Graphs

1.1 Fundamentals

1.2 Isomorphism

1.3 Families of graphs

1.4 Operations on graphs

1.5 Degree sequences

1.6 Path and cycles

1.7 Connected graphs and distance

1.8 Trees and forests

1.9 Multigraphs and pseudographs

2 Digraphs

2.1 Fundamentals

2.2 Strongly connected digraphs

2.3 Tournaments

2.4 Score sequences

3 Traversability

3.1 Eulerian graphs and digraphs

3.2 Hamiltonian graphs

3.3 Hamiltonian digraphs

3.4 Highly hamiltonian graphs

3.5 Graph powers

4 Connectivity

4.1 Cut-vertices, bridges, and blocks

4.2 Vertex connectivity

4.3 Edge-connectivity

4.4 Menger's theorem

5 Planarity

5.1 Euler's formula

5.2 Characterizations of planarity

5.3 Hamiltonian planar graphs

5.4 The crossing number of a graph

6 Coloring

6.1 Vertex coloring

6.2 Edge coloring

6.3 Critical and perfect graphs

6.4 Maps and planar graphs

7 Flows

7.1 Networks

7.2 Max-flow min-cut theorem

7.3 Menger's theorems for digraphs

7.4 A connection to coloring

8 Factors and covers

8.1 Matchings and 1-factors

8.2 Independence and covers

8.3 Domination

8.4 Factorizations and decompositions

8.5 Labelings of graphs

9 Extremal graph theory

9.1 Avoiding a complete graph

9.2 Containing cycles and trees

9.3 Ramsey theory

9.4 Cages and Moore graphs

10 Embeddings

10.1 The genus of a graph

10.2 2-Cell embeddings of graphs

10.3 The maximum genus of a graph

10.4 The graph minor theorem

11 Graphs and algebra

11.1 Graphs and matrices

11.2 The automorphism group

11.3 Cayley color graphs

11.4 The reconstruction problem

最近チェックした商品