多変量統計の手法(テキスト・第5版)<br>Multivariate Statistical Methods : A Primer (5TH)

個数:

多変量統計の手法(テキスト・第5版)
Multivariate Statistical Methods : A Primer (5TH)

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 280 p.
  • 言語 ENG
  • 商品コード 9781032591971
  • DDC分類 519.535

Full Description

Multivariate Statistical Methods: A Primer

offers an introduction to multivariate statistical methods in a rigorous yet intuitive way, without an excess of mathematical details. In this fifth edition, all chapters have been revised and updated, with clearer and more direct language than in previous editions, and with more up-to-date examples, exercises, and references, in areas as diverse as biology, environmental sciences, economics, social medicine, and politics.

Features

• A concise and accessible conceptual approach that requires minimal mathematical background.

• Suitable for a wide range of applied statisticians and professionals from the natural and social sciences.

• Presents all the key topics for a multivariate statistics course.

• The R code in the appendices has been updated, and there is a new appendix introducing programming basics for R.

• The data from examples and exercises are available on a companion website.

This book continues to be a great starting point for readers looking to become proficient in multivariate statistical methods, but who might not be deeply versed in the language of mathematics. In this edition, we provide readers with conceptual introductions to methods, practical suggestions, new references, and a more extensive collection of R functions and code that will help them to deepen their toolkit of multivariate statistical methods.

Contents

1. The Material of Multivariate Analysis. 2. Matrix Algebra. 3. Displaying Multivariate Data. 4. Tests of Significance with Multivariate Data. 5. Measuring and Testing Multivariate Distances. 6. Principal Components Analysis. 7. Factor Analysis. 8. Discriminant Function Analysis. 9. Cluster Analysis. 10. Canonical Correlation Analysis
11. Multidimensional Scaling. 12. Ordination. 13. Epilogue.

最近チェックした商品