An Introduction to Applied Statistics : With Step-By-Step SPSS Instructions (2ND)

個数:
  • ポイントキャンペーン

An Introduction to Applied Statistics : With Step-By-Step SPSS Instructions (2ND)

  • ウェブストア価格 ¥71,843(本体¥65,312)
  • Routledge(2025/07発売)
  • 外貨定価 US$ 325.00
  • 【ウェブストア限定】洋書・洋古書ポイント5倍対象商品(~2/28)
  • ポイント 3,265pt
  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 698 p.
  • 言語 ENG
  • 商品コード 9781032579955
  • DDC分類 519.5

Full Description

An Introduction to Applied Statistics offers a comprehensive and accessible foundation in applied statistics, empowering students with the essential concepts and practical skills necessary for data-driven decision-making in today's world. Thoroughly covering key topics - including data management, probability fundamentals, data screening, descriptive statistics, and a broad spectrum of inferential analysis techniques - this indispensable guide demystifies statistical concepts and equips students to confidently apply statistical analysis in real-world contexts.

With a systematic, beginner-friendly approach, the author assumes no prior knowledge, making complex statistical foundations accessible to students from a variety of disciplines. Concise, digestible chapters build statistical competencies within a practical, evidence-based framework, minimizing technical jargon to facilitate comprehension. Now in its latest edition, the book is fully updated with SPSS v29.0 instructions and screenshots, ensuring compatibility with the most recent software developments. It also includes expanded content on addressing nonrandom sampling issues, such as case weighting, and delves into advanced topics like factor analysis, logistic regression, cluster analysis, and discriminant analysis, catering to the evolving needs of students and professionals alike.

An invaluable resource for introductory quantitative research methods courses in psychology, social sciences, business, and marketing, this text combines practical examples, online resources, and an approachable format to support both learning and application.

Key Features:

Concise chapters integrating real-world applications: Seamlessly blends statistical skills with practical scenarios, illustrating the flexible use of statistics in evidence-based decision-making.
Accessible presentation: Offers practical explanations of statistical procedures with minimal technical jargon, enhancing understanding and retention.
Foundational preparation: Early chapters are designed to equip students for advanced statistical procedures, building a strong foundational knowledge.
Step-by-step SPSS instructions: Provides detailed SPSS v29.0 guidance with screenshots to reinforce comprehension and hands-on skills.
Real-world exercises with answers: Includes practical exercises complete with solutions to facilitate active learning and application.
Comprehensive instructor resources: Offers extensive teaching support with chapter PowerPoints and test banks to enhance the educational experience.

Contents

PART I: GETTING STARTED 1. An Introduction to Applied Statistics 2. Statistics: Descriptive, Inferential, and Correlational 3. Data and Types of Variables 4. SPSS 29 Statistics Data Management Basics - Preparing Data for Analysis; PART II: SAMPLING CONSIDERATIONS 5. Sampling Strategies 6. Sample Size 7. Sources and Types of Statistical Error 8. Missing Data; PART III: DATA SCREENING, DESCRIBING, AND PROBABILITIES 9. Describing Categorical Variables 10. Basic Probabilities for Categorical Variables 11. The Concepts of Data Distribution, Probability Values, and Significance Testing 12. Numeric Variables: Data Screening and Removing Outliers; PART IV: STATISTICAL ANALYSIS Categorical Variables 13. Chi-Square Goodness of Fit Test: Comparing Counts in a Single Variable With Two or More Categories 14. Chi-Square Test of Independence: Comparing Counts Between Two Variables Each With Two or More Categories 15. Chi-Square Test of the Same Sample: Comparing Counts of the Same Sample Measured Twice Using a Categorical Variable Numeric Variables 16. t-Test: Comparing a Single-Sample Mean to a Specific Value 17. t-Test: Comparing Two Independent Samples' Variable Means 18. Analysis of Variance (ANOVA): Comparing More Than Two Independent Samples' Means to Test for Differences Among Them 19. Paired t-Test: Comparing the Means of the Same Sample Measured Twice Using a Numeric Variable Association and Regression 20. General Linear Model Repeated Measures: Comparing Means of the Same Sample Measured More Than Twice Using a Numeric Variable 21. Bivariate Correlation: The Association Between Two Variables 22. Linear Regression 23. Logistic Regression Data Reduction 24. Factor Analysis: From Data Reduction to Latent Variables 25. Classification Using Cluster Analysis; APPENDICES Appendix A: Glossary Appendix B: Chapter Statistical Exercise Solutions Appendix C: Statistics Flow Chart

最近チェックした商品