遠隔探査によるデータの分類法(第3版)<br>Classification Methods for Remotely Sensed Data (3RD)

個数:

遠隔探査によるデータの分類法(第3版)
Classification Methods for Remotely Sensed Data (3RD)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 422 p.
  • 言語 ENG
  • 商品コード 9781032573939
  • DDC分類 621.3678

Full Description

The third edition of the bestselling Classification Methods for Remotely Sensed Data covers current state-of-the-art machine learning algorithms and developments in the analysis of remotely sensed data. This book is thoroughly updated to meet the needs of readers today and provides six new chapters on deep learning, feature extraction and selection, multisource image fusion, hyperparameter optimization, accuracy assessment with model explainability, and object-based image analysis, which is relatively a new paradigm in image processing and classification. It presents new AI-based analysis tools and metrics together with ongoing debates on accuracy assessment strategies and XAI methods.

New in this edition:

Provides comprehensive background on the theory of deep learning and its application to remote sensing data.
Includes a chapter on hyperparameter optimization techniques to guarantee the highest performance in classification applications.
Outlines the latest strategies and accuracy measures in accuracy assessment and summarizes accuracy metrics and assessment strategies.
Discusses the methods used for explaining inherent structures and weighing the features of ML and AI algorithms that are critical for explaining the robustness of the models.

This book is intended for industry professionals, researchers, academics, and graduate students who want a thorough and up-to-date guide to the many and varied techniques of image classification applied in the fields of geography, geospatial and earth sciences, electronic and computer science, environmental engineering, etc.

Contents

1. Fundamentals of Remote Sensing. 2. Pattern Recognition Principles. 3. Dimensionality Reduction: Feature Extraction and Selection. 4. Multisource Image Fusion and Classification. 5. Support Vector Machines. 6. Decision Trees. 7. Deep Learning. 8. Object-Based Image Analysis. 9. Hyperparameter Optimization. 10. Accuracy Assessment and Model Explainability.

最近チェックした商品