- ホーム
- > 洋書
- > 英文書
- > Science / Mathematics
Full Description
Two-dimensional semiconducting materials (2D-SCMs) are the subject of intensive study in the fields of photonics and optoelectronics because of their unusual optical, electrical, thermal, and mechanical properties. The main objective of 2D Semiconducting Materials for Electronic, Photonic, and Optoelectronic Devices is to provide current, state-of-the-art knowledge of two-dimensional semiconducting materials for various applications. Two-dimensional semiconducting materials are the basic building blocks for making photodiodes, light-emitting diodes, light-detecting devices, data storage, telecommunications, and energy-storage devices. When it comes to two-dimensional semiconducting materials, electronic, photonic, and optoelectronic applications, as well as future plans for improving performance, no modern book covers as much ground. The planned book will fill such gaps by offering a comprehensive analysis of two-dimensional semiconducting materials.
This book covers a range of advanced 2D materials, their fundamentals, and the chemistry for many emerging applications. All the chapters are covered by experts in these areas around the world, making this a suitable textbook for students and providing new guidelines to researchers and industries.
• Covers topics such as fundamentals and advanced knowledge of two-dimensional semiconducting materials
• Provides details about the recent methods used for the synthesis, characterization, and applications of two-dimensional semiconducting materials
• Covers the state-of-the-art development in two-dimensional semiconducting materials and their emerging applications
This book provides directions to students, scientists, and researchers in semiconductors and related disciplines to help them better understand the physics, characteristics, and applications of 2D semiconductors.
Contents
1 Fundamentals of 2D Semiconducting Materials
2 Synthesis and Characterization of 2D-Semiconducting Materials
3 Synthesis and Applications of Graphene Quantum Dots
4 Wide Bandgap 2D Semiconductors and their Applications
5 Interfacial Properties and Geometry of 2D Semiconducting Materials
6 Molecular Orbital Delocalization and Stacking Effect on 2D Semiconducting Materials
7 Properties of 2D Semiconducting Materials
8 Optical, Electrical, Thermal, and Mechanical Properties of 2D Semiconducting Materials
9 Metal-Oxide-Semiconductor Devices
10 Progresses in Two-dimensional Ferroelectrics and Potential Applications
11 Logic Devices based on 2D Semiconducting Materials
12 Memristors based on 2D Semiconducting Materials
13 Other Sensors based on 2D-SCMs (Light, Gas, Liquid, Pulse, etc.)
14 Telecommunications Devices based on 2D Semiconducting Materials
15 Chips based on 2D Semiconducting Materials
16 2D Semiconductors for Electrochemical Energy Applications
17 Solar Rechargeable Energy Conversion/Storage Systems: Overview of 2D Nanomaterials
18 Energy Generation Devices based on 2D-SCM
19 Electrical Energy Storage Devices based on 2D Semiconducting Materials
20 Two-dimensional (2D) Semiconductors for Solar to Hydrogen Fuel
21 2D Semiconductors for Next-Generation Thermoelectric Materials