Multi-Modal Human Modeling, Analysis and Synthesis

個数:

Multi-Modal Human Modeling, Analysis and Synthesis

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 320 p.
  • 言語 ENG
  • 商品コード 9781032527642

Full Description

In today's world, where intelligent technologies are deeply transforming human-computer interaction and virtual reality, multi-modal human modeling, analysis and synthesis have become central topics in computer vision. As application scenarios grow increasingly complex, new technologies continue to emerge to address these challenges. These techniques demand systematic summarization and practical guidance.

To meet this need, Multi-Modal Human Modeling, Analysis and Synthesis aims to adopt a structured perspective, building a comprehensive technical framework for multi-modal human modeling, analysis and synthesis—progressing from local details to holistic perspectives, and from face features to body dynamics.

This book begins by examining the anatomy structures and characteristics of human faces and bodies, then analyzes how traditional methods and deep learning approaches provide robust optimization solutions for modeling. For example, it explores how to address challenges in face recognition caused by lighting changes, occlusions, face expressions and aging, as well as methods for body localization, reconstruction, recognition and anomaly detection in multi-modal scenarios. It also explains how multi-modal data can drive realistic face and body synthesis. A standout feature is its focus on Huawei's MindSpore framework, bridging the gap between algorithms and engineering through practical case studies. From building face detection and recognition pipelines with the MindSpore toolkit to accelerating model training via automatic parallel computing, and solving large language model (LLM) training challenges, each step is supported by reproducible code and design logic.

Designed for researchers and engineers in computer vision and AI, this book balances theoretical foundations with industry-ready technical details. Whether you aim to enhance the reliability of biometric recognition, explore creative possibilities in virtual-real interactions or optimize the deployment of deep learning frameworks, this guide serves as an essential link between academic advancements and real-world applications.

Contents

Chapter 1 Introduction

Jun Yu, Changwei Luo, Chang Wen Chen, Fengxin Chen and Wei Xu

Chapter 2 Human Face Modeling

Jun Yu, Changwei Luo and Fengxin Chen

Chapter 3 Human Face Analysis

Jun Yu, Changwei Luo and Fengxin Chen

Chapter 4 Human Face Synthesis

Jun Yu and Fengxin Chen

Chapter 5 Human Body Modeling

Fengxin Chen and Jun Yu

Chapter 6 Human Body Analysis

Fengxin Chen and Jun Yu

Chapter 7 Human Body Synthesis

Fengxin Chen and Jun Yu

Chapter 8 MindSpore: An All-Scenario Deep Learning Computing Framework

Peng He, Jun Yu, Xuefeng Jin, Fan Yu, Cong Wang, Wei Zheng and Yuanyuan Tuo

最近チェックした商品