地理空間データ分析のための説明可能な機械学習<br>Explainable Machine Learning for Geospatial Data Analysis : A Data-Centric Approach

個数:

地理空間データ分析のための説明可能な機械学習
Explainable Machine Learning for Geospatial Data Analysis : A Data-Centric Approach

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 266 p.
  • 言語 ENG
  • 商品コード 9781032503806
  • DDC分類 910.285631

Full Description

Explainable machine learning (XML), a subfield of AI, is focused on making complex AI models understandable to humans. This book highlights and explains the details of machine learning models used in geospatial data analysis. It demonstrates the need for a data-centric, explainable machine learning approach to obtain new insights from geospatial data. It presents the opportunities, challenges, and gaps in the machine and deep learning approaches for geospatial data analysis and how they are applied to solve various environmental problems in land cover changes and in modeling forest canopy height and aboveground biomass density. The author also includes guidelines and code scripts (R, Python) valuable for practical readers.

Features

Data-centric explainable machine learning (ML) approaches for geospatial data analysis.
The foundations and approaches to explainable ML and deep learning.
Several case studies from urban land cover and forestry where existing explainable machine learning methods are applied.
Descriptions of the opportunities, challenges, and gaps in data-centric explainable ML approaches for geospatial data analysis.
Scripts in R and python to perform geospatial data analysis, available upon request.

This book is an essential resource for graduate students, researchers, and academics working in and studying data science and machine learning, as well as geospatial data science professionals using GIS and remote sensing in environmental fields.

Contents

Part I: Introduction. 1. Challenges and Opportunities. Part II: Foundations. 2. An Introduction to Explainable Machine Learning. 3. Approaches to Explainable Machine Learning. 4. Approaches to Explainable Deep Learning. 5. Landslide Susceptibility Modeling Using a Logistic Regression Model. Part III: Techniques and Applications. 6. Urban Land Cover Classification Using Earth Observation (EO) Data and Machine Learning Models. 7. Modeling Forest Canopy Height Using Earth Observation (EO) Data and Machine Learning Models. 8. Modeling Aboveground Biomass Density Using Earth Observation (EO) Data and Machine Learning Models. 9. Explainable Deep Learning for Mapping Building Footprints Using High-Resolution Imagery. 10. Towards Explainable AI and Data-Centric Approaches for Geospatial Data Analysis. 11. Appendix.

最近チェックした商品