Intelligent Data-Driven Modelling and Optimization in Power and Energy Applications (Intelligent Data-driven Systems and Artificial Intelligence)

個数:

Intelligent Data-Driven Modelling and Optimization in Power and Energy Applications (Intelligent Data-driven Systems and Artificial Intelligence)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 238 p.
  • 言語 ENG
  • 商品コード 9781032472065
  • DDC分類 629.8

Full Description

This book provides a comprehensive understanding of how intelligent data-driven techniques can be used for modelling, controlling, and optimizing various power and energy applications. It aims to develop multiple data-driven models for forecasting renewable energy sources and to interpret the benefits of these techniques in line with first-principles modelling approaches. By doing so, the book aims to stimulate deep insights into computational intelligence approaches in data-driven models and to promote their potential applications in the power and energy sectors. Its key features include:

an exclusive section on essential preprocessing approaches for the data-driven model
a detailed overview of data-driven model applications to power system planning and operational activities
specific focus on developing forecasting models for renewable generations such as solar PV and wind power, and
showcasing the judicious amalgamation of allied mathematical treatments such as optimization and fractional calculus in data-driven model-based frameworks

This book presents novel concepts for applying data-driven models, mainly in the power and energy sectors, and is intended for graduate students, industry professionals, research, and academic personnel.

Contents

1. Preprocessing Approaches for Data-Driven Modeling. 2. Power System Planning Using Data-Driven Models. 3. Data-Driven Analytics for Power System Stability Assessment. 4. Data-Driven Machine Learning Models for Load Power Forecasting in Photovoltaic systems. 5. Forecasting of Renewable Energy Using Fractional-Order Neural Networks. 6. Data-Driven Photovoltaic System Characteristic Determination using Nonlinear System Identification. 7. Fractional Feedforward Neural Network-Based Smart Grid Stability Prediction Model. 8. Data-driven Optimization Framework for Microgrid Energy Management Considering Demand Response and Generation Uncertainties. 9. Optimization of Controllers for Sustained Building. 10. Intelligent Data-Driven Approach for Fractional-Order Wireless Power Transfer System

最近チェックした商品