マルチメディア・データ処理とプログラミング<br>Multimedia Data Processing and Computing (Innovations in Multimedia, Virtual Reality and Augmentation)

個数:
電子版価格
¥20,897
  • 電子版あり

マルチメディア・データ処理とプログラミング
Multimedia Data Processing and Computing (Innovations in Multimedia, Virtual Reality and Augmentation)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 176 p.
  • 言語 ENG
  • 商品コード 9781032469317
  • DDC分類 006.7

Full Description

This book focuses on different applications of multimedia with supervised and unsupervised data engineering in the modern world. It includes AI-based soft computing and machine techniques in the field of medical diagnosis, biometrics, networking, manufacturing, data science, automation in electronics industries, and many more relevant fields.

Multimedia Data Processing and Computing provides a complete introduction to machine learning concepts, as well as practical guidance on how to use machine learning tools and techniques in real-world data engineering situations. It is divided into three sections. In this book on multimedia data engineering and machine learning, the reader will learn how to prepare inputs, interpret outputs, appraise discoveries, and employ algorithmic strategies that are at the heart of successful data mining. The chapters focus on the use of various machine learning algorithms, neural net- work algorithms, evolutionary techniques, fuzzy logic techniques, and deep learning techniques through projects, so that the reader can easily understand not only the concept of different algorithms but also the real-world implementation of the algorithms using IoT devices. The authors bring together concepts, ideas, paradigms, tools, methodologies, and strategies that span both supervised and unsupervised engineering, with a particular emphasis on multimedia data engineering. The authors also emphasize the need for developing a foundation of machine learning expertise in order to deal with a variety of real-world case studies in a variety of sectors such as biological communication systems, healthcare, security, finance, and economics, among others. Finally, the book also presents real-world case studies from machine learning ecosystems to demonstrate the necessary machine learning skills to become a successful practitioner.

The primary users for the book include undergraduate and postgraduate students, researchers, academicians, specialists, and practitioners in computer science and engineering.

Contents

Chapter 1. A Review On Despeckling Of Earth Surface Visuals Captured By Synthetic Aperture Radar

Chapter 2. Emotion Recognition Using Multimodal Fusion Models: A Review

Chapter 3. Comparison of CNN-based features with gradient features for Tomato plant leaf disease detection

Chapter 4. Delay Sensitive and Energy Efficient Approach for Improving Longevity of Wireless Sensor Network

Chapter 5. Detecting Lumpy Skin Disease using Deep Learning Techniques

Chapter 6. Forest Fire Detection using Nine-Layer Deep Convolutional Neural Network

Chapter 7. Identification of the Features of Vehicle using CNN

Chapter 8. Plant Leaf Disease Detection Using Supervised Machine Learning Algorithm

Chapter 9. Smart Scholarship Registration Platform using RPA Technology

Chapter 10. Data Processing Methodologies and a Serverless Approach to Solar Data Analytics

Chapter 11. A Discussion with Illustrations on World changing ChatGPT- an Open AI Tool

Chapter 12. A Discussion with Illustrations on World changing ChatGPT- an Open AI Tool

Chapter 13. Advancing Early Cancer Detection with Machine Learning: A Comprehensive Review of Methods and Applications

最近チェックした商品