Multi-Sensor and Multi-Temporal Remote Sensing : Specific Single Class Mapping

個数:

Multi-Sensor and Multi-Temporal Remote Sensing : Specific Single Class Mapping

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 148 p.
  • 言語 ENG
  • 商品コード 9781032446523
  • DDC分類 621.3678

Full Description

This book elaborates fuzzy machine and deep learning models for single class mapping from multi-sensor, multi-temporal remote sensing images while handling mixed pixels and noise. It also covers the ways of pre-processing and spectral dimensionality reduction of temporal data. Further, it discusses the 'individual sample as mean' training approach to handle heterogeneity within a class. The appendix section of the book includes case studies such as mapping crop type, forest species, and stubble burnt paddy fields.

Key features:

Focuses on use of multi-sensor, multi-temporal data while handling spectral overlap between classes
Discusses range of fuzzy/deep learning models capable to extract specific single class and separates noise
Describes pre-processing while using spectral, textural, CBSI indices, and back scatter coefficient/Radar Vegetation Index (RVI)
Discusses the role of training data to handle the heterogeneity within a class
Supports multi-sensor and multi-temporal data processing through in-house SMIC software
Includes case studies and practical applications for single class mapping

This book is intended for graduate/postgraduate students, research scholars, and professionals working in environmental, geography, computer sciences, remote sensing, geoinformatics, forestry, agriculture, post-disaster, urban transition studies, and other related areas.

Contents

1. Remote-Sensing Images 2. Evolution of Pixel-Based Spectral Indices 3. Multi-Sensor, Multi-Temporal Remote-Sensing 4. Training Approaches—Role of Training Data 5. Machine-Learning Models for Specific-Class Mapping 6. Learning-Based Algorithms for Specific-Class Mapping Appendix A1 Specific Single Class Mapping Case Studies Appendix A2 SMIC—Temporal Data-Processing Module for Specific-Class Mapping

最近チェックした商品