Signal and Image Processing for Remote Sensing (Signal and Image Processing of Earth Observations) (3RD)

個数:

Signal and Image Processing for Remote Sensing (Signal and Image Processing of Earth Observations) (3RD)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 414 p.
  • 言語 ENG
  • 商品コード 9781032437415
  • DDC分類 621.367801154

Full Description

Advances in signal and image processing for remote sensing have been tremendous in recent years. The progress has been particularly significant with the use of deep learning based techniques to solve remote sensing problems. These advancements are the focus of this third edition of Signal and Image Processing for Remote Sensing. It emphasizes the use of machine learning approaches for the extraction of remote sensing information. Other topics include change detection in remote sensing and compressed sensing. With 19 new chapters written by world leaders in the field, this book provides an authoritative examination and offers a unique point of view on signal and image processing.

Features

Includes all new content and does not replace the previous edition
Covers machine learning approaches in both signal and image processing for remote sensing
Studies deep learning methods for remote sensing information extraction that is found in other books
Explains SAR, microwave, seismic, GPR, and hyperspectral sensors and all sensors considered
Discusses improved pattern classification approaches and compressed sensing approaches
Provides ample examples of each aspect of both signal and image processing

This book is intended for university academics, researchers, postgraduate students, industry, and government professionals who use remote sensing and its applications.

Contents

PART I General Topics

Chapter 1 A Brief Overview of 60 Years of Progress on Signal/Image Processing for

Remote Sensing

C.H. Chen

Chapter 2 Proven Approaches of Using Innovative High‑Performance Computing

Architectures in Remote Sensing

Rocco Sedona, Gabriele Cavallaro, Morris Riedel, and Jon Atli Benediktsson

PART II Signal Processing for Remote Sensing

Chapter 3 Machine Learning Techniques for Geophysical Parameter Retrievals

Adam B. Milstein, Michael Pieper, and William J. Blackwell

Chapter 4 Subsurface Inverse Profiling and Imaging Using Stochastic Optimization Techniques

Maryam Hajebi and Ahmad Hoorfar

Chapter 5 Close and Remote Ground Penetrating Radar Surveys via Microwave Tomography: State of Art and Perspectives

Gianluca Gennarelli, Giuseppe Esposito, Giovanni Ludeno,

Francesco Soldovieri, and Ilaria Catapano

Chapter 6 Polarimetric SAR Signature of Complex Scene: A Simulation Study

Kun‑Shan Chen, Cheng‑Yen Chiang, and Ying Yang

Chapter 7 Machine Learning for Arctic Sea Ice Physical Properties Estimation Using Dual‑Polarimetric SAR Data

Katalin Blix, Martine M. Espeseth, and Torbjorn Eltoft

Chapter 8 Riemannian Clustering of PolSAR Data Using the Polar Decomposition

Madalina Ciuca, Gabriel Vasile, Marco Congedo, and Michel Gay

Chapter 9 Seismic Velocity Picking Using Hopfield Neural Network

Kou‑Yuan Huang and Jia‑Rong Yang

Chapter 10 Expanded Radial Basis Function Network with Proof of Hidden Node Number by Recurrence Relation for Well Log Data Inversion

Kou‑Yuan Huang, Liang‑Chi Shen, Jiun‑Der You, and Li‑Sheng Weng

PART III Image Processing for Remote Sensing

Chapter 11 Convolutional Neural Networks Meet Markov Random Fields for Semantic Segmentation of Remote Sensing Images

Martina Pastorino, Gabriele Moser, Sebastiano B. Serpico, and Josiane Zerubia

Chapter 12 Deep Learning Methods for Satellite Image Super‑Resolution

Diego Valsesia and Enrico Magli

Chapter 13 Machine Learning in Remote Sensing

Ronny Hansch

Chapter 14 Robust Training of Deep Neural Networks with Weakly Labelled Data

Gianmarco Perantoni and Lorenzo Bruzzone

Chapter 15 Semantic Segmentation with OTBTF and Keras

Remi Cresson

Chapter 16 Performance of a Diffusion Model for Instance Segmentation in Remote Sensing Imagery

Selin Koles, Sedat Ozer, and C.H. Chen

Chapter 17 Land Cover Classification Using Attention‑Based Multi‑Modal Image Fusion: An Explainable Analysis

Oktay Karakus, Wanli Ma, and Paul L. Rosin

Chapter 18 FPGA Compressive Sensing Method Applied to Hyperspectral ImageryJose Nascimento and Mario Vestias

Chapter 19 Large‑Scale Fine‑Grained Change Detection from Multisensory Satellite Images

Andrea Garzelli and Claudia Zoppetti

Chapter 20 Change Detection on Graphs: Exploiting Graph Structure from Bi‑temporal Satellite Imagery

Juan F. Florez‑Ospina, Hernan D. Benitez‑Restrepo, and David A. Jimenez‑Sierra

Chapter 21 Target Detection in Hyperspectral Imaging Using Neural Networks

Edisanter Lo and Emmett Ientilucci

最近チェックした商品