Rを用いた実践機械学習:手引きとケーススタディ<br>Practical Machine Learning with R : Tutorials and Case Studies

個数:

Rを用いた実践機械学習:手引きとケーススタディ
Practical Machine Learning with R : Tutorials and Case Studies

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 352 p.
  • 言語 ENG
  • 商品コード 9781032434056
  • DDC分類 006.31

Full Description

This textbook is a comprehensive guide to machine learning and artificial intelligence tailored for students in business and economics. It takes a hands-on approach to teach machine learning, emphasizing practical applications over complex mathematical concepts. Students are not required to have advanced mathematics knowledge such as matrix algebra or calculus.

The author introduces machine learning algorithms, utilizing the widely used R language for statistical analysis. Each chapter includes examples, case studies, and interactive tutorials to enhance understanding. No prior programming knowledge is needed. The book leverages the tidymodels package, an extension of R, to streamline data processing and model workflows. This package simplifies commands, making the logic of algorithms more accessible by minimizing programming syntax hurdles. The use of tidymodels ensures a unified experience across various machine learning models.

With interactive tutorials that students can download and follow along at their own pace, the book provides a practical approach to apply machine learning algorithms to real-world scenarios.

In addition to the interactive tutorials, each chapter includes a Digital Resources section, offering links to articles, videos, data, and sample R code scripts. A companion website further enriches the learning and teaching experience: https://ai.lange-analytics.com.

This book is not just a textbook; it is a dynamic learning experience that empowers students and instructors alike with a practical and accessible approach to machine learning in business and economics.

Key Features:

Unlocks machine learning basics without advanced mathematics — no calculus or matrix algebra required.
Demonstrates each concept with R code and real-world data for a deep understanding — no prior programming knowledge is needed.
Bridges the gap between theory and real-world applications with hands-on interactive projects and tutorials in every chapter, guided with hints and solutions.
Encourages continuous learning with chapter-specific online resources—video tutorials, R-scripts, blog posts, and an online community.
Supports instructors through a companion website that includes customizable materials such as slides and syllabi to fit their specific course needs.

Contents

1. Introduction 2. Basics of Machine Learning 3. Introduction to R and RStudio 4. k-Nearest Neighbors — Getting Started 5. Linear Regression — Key Machine Learning Concepts 6. Polynomial Regression — Overfitting & Tuning Explained 7. Ridge, Lasso, and Elastic Net — Regularization Explained 8. Logistic Regression — Handling Imbalanced Data 9. Deep Learning — MLP Neural Networks Explained 10. Tree-Based Models — Bootstrapping Explained 11. Interpreting Machine Learning Results 12. Concluding Remarks Index Bibliography

最近チェックした商品