Improving Equity in Data Science : Re-Imagining the Teaching and Learning of Data in K-16 Classrooms

個数:
電子版価格
¥10,014
  • 電子版あり

Improving Equity in Data Science : Re-Imagining the Teaching and Learning of Data in K-16 Classrooms

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 190 p.
  • 言語 ENG
  • 商品コード 9781032428666
  • DDC分類 004.071073

Full Description

Improving Equity in Data Science offers a comprehensive look at the ways in which data science can be conceptualized and engaged more equitably within the K-16 classroom setting, moving beyond merely broadening participation in educational opportunities. This book makes the case for field wide definitions, literacies and practices for data science teaching and learning that can be commonly discussed and used, and provides examples from research of these practices and literacies in action.

Authors share stories and examples of research wherein data science advances equity and empowerment through the critical examination of social, educational, and political topics. In the first half of the book, readers will learn how data science can deliberately be embedded within K-12 spaces to empower students to use it to identify and address inequity. The latter half will focus on equity of access to data science learning opportunities in higher education, with a final synthesis of lessons learned and presentation of a 360-degree framework that links access, curriculum, and pedagogy as multiple facets collectively essential to comprehensive data science equity work.

Practitioners and teacher educators will be able to answer the question, "how can data science serve to move equity efforts in computing beyond basic inclusion to empowerment?" whether the goal is to simply improve definitions and approaches to research on data science or support teachers of data science in creating more equitable and inclusive environments within their classrooms.

Contents

1. Overview 2. Perspectives on Research and Practice In and Around Cultural Relevance for Pre-College Data Science in Computing 3. Shrinking Lands and Growing Perspectives: Affordances of Data Science Literacy During a Culturally-Responsive Maker Project 4. Design of Tools and Learning Environments for Equitable Computer Science + Data Science Education 5. The Case For Community Centered Data Science 6. Humanistic Pre-Service Data Science Teacher Education Across the Disciplines 7. Everyday Equitable Data Literacy is Best in Social Studies: STEM Can't Do What We Can Do 8. The Utility of Designing Data Science Education Programs from a Framework of Identity 9. Building the Infrastructure for Quantitative Criticalism in Research Methods Courses 10. Closing Thoughts and Future Directions

最近チェックした商品