Business Analytics : Theory and Practice

個数:
  • 予約

Business Analytics : Theory and Practice

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 400 p.
  • 言語 ENG
  • 商品コード 9781032415574

Full Description

Business Analytics is an emerging area which encompasses various technical understanding, essential for both Engineering and Management fields of study. This book presents detailed theoretical study of Business Analytics including analytical methods from various aspects such as descriptive and predictive analytics, statistical distributions, multivariate statistical analysis, time series analysis, simulation concept, optimization theory, neural network concepts, various learning techniques, visualization techniques, and performance metrics.

Features:

Illustrates all the existing common analytics are presented in this book in significant details.
Covers analytics, statistical concepts, multivariate statistical analysis, time series analysis, optimization, neural network, and decision analysis.
Reviews various learning techniques, simulation, visualization techniques, and performance metrics.
Puts emphasis on Python and R in context of business analytics.
Includes figure-based, graphical descriptions along with numerical examples.

This book is aimed at senior undergraduate students in engineering and management including business analytics, and industrial engineering.

Contents

1. Introduction

2. Discrete and Continuous Probability Distributions

3. Introduction to R Software

4. Introduction to Python and XLSTAT

5. Basic Statistics

6. Sampling and ANOVA

7. Multivariate Probability Distribution

8. Regression

9. Path Model and Discriminant Analysis

10. PCA and Factor Analysis

11. Structural Equation Modelling

12. Moving Average and Box-Jenkin's Method

13. Time Series Models Part II

14. Mathematical Optimization Techniques

15. Dynamic Programming, Markov Analysis, and Information Theory

16. Nonlinear Optimization

17. Nature-Based Techniques and Multicriteria Decision Analysis Techniques

18. Artificial Neural Network

19. Learning Rules

20. Descriptive Analytics

21. Decision Tree

22. Other Learning Techniques

23. Simulation

24. Continuous Simulation

25. Simulation Optimization

26. Data Mining and Partitioning

27. Visualization Techniques and Dimension Reduction Techniques

28. Performance Metrics

29. Additional Techniques for Diagnostic Analytics and Prescriptive Analytics

30. Implementation of Different Methodologies with R

最近チェックした商品