知的量子情報処理<br>Intelligent Quantum Information Processing (Quantum Machine Intelligence)

個数:

知的量子情報処理
Intelligent Quantum Information Processing (Quantum Machine Intelligence)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 228 p.
  • 言語 ENG
  • 商品コード 9781032392677
  • DDC分類 006.31

Full Description

The book discusses the foundations of intelligent quantum information processing applied to several real-life engineering problems, including intelligent quantum systems, intelligent quantum communication, intelligent process optimization, and intelligent quantum distributed networks.

This book:

• Showcases a detailed overview of different quantum machine learning algorithmic frameworks.

• Presents real-life case studies and applications.

• Provides an in-depth analysis of quantum mechanical principles.

• Provides a step-by-step guide in the build-up of quantum inspired/quantum intelligent information processing systems.

• Provides a video demonstration on each chapter for better understanding.

It will serve as an ideal reference text for graduate students and academic researchers in fields such as electrical engineering, electronics and communication engineering, computer engineering, and information technology.

Contents

Preface

About the Editors

List of Contributors

1 The Role of Quantum Entanglement in Information Processing for Secured Data Transmission

ARPAN DEYASI, PAMPA DEBNATH, AND SIDDHARTHA BHATTACHARYYA

1.1 Introduction

1.2 Quantum Interference

1.3 Quantum Superposition

1.4 Quantum Entanglement

1.5 Quantum Communication

1.6 Quantum Information Processing

1.7 Qubit

1.8 Secured Data Communication

1.9 Quantum Key Distribution

1.10 Quantum Internet

References

2 Quantum Information Processing for Next-Generation Communication System Design

SWETA SHARMA, SOUMEN SANTRA, AND ARPAN DEYASI

2.1 Introduction

2.1.1 Historical Development of Quantum Information Science

2.2 Quantum Algorithm

2.2.1 Algorithms Based on the Quantum Fourier Transform

2.2.2 Algorithms Based on Amplitude Amplification

2.2.3 Algorithms Based on Quantum Walks

2.2.4 BQP-Complete Problems

2.2.5 Hybrid Quantum/Classical Algorithms

2.3 Recent Advances and Current Prospects in Quantum Information Processing

2.3.1 Quantum Computation

2.3.2 Theory of Quantum Computation

2.3.3 Quantum Communication

2.3.4 Quantum Sensing and Metrology

2.4 Conceptual and Technical Challenges

2.4.1 Challenges for Quantum Computing

2.4.2 Challenges for Quantum Communications

2.4.3 Challenges for Quantum Sensing and Metrology

2.5 Conclusion

References

3 Automatic Classification of Tables Using Hybrid Quantum Convolutional Neural Networks

ERICK FRANCO-GAONA, IVÁN CRUZ-ACEVES, AND MARIA-SUSANA AVILA-GARCIA

3.1 Introduction

3.2 Background

3.2.1 Database of Information Elements

3.2.2 Convolutional Neural Networks

3.2.3 Quantum Convolutional Neural Networks

3.3 Proposed Method for Classifying Tables

3.3.1 Hybrid Quantum Convolutional Neural Networks

3.3.2 Convolutional Neural Networks

3.3.3 Transfer Learning

3.3.4 Data Augmentation

3.3.5 Hyperparameters

3.3.6 Evaluation Metrics

3.4 Computational Experiments

3.4.1 CNN Experiments

3.4.2 HQCNN Experiments

3.5 Conclusion and Future Work

3.6 Appendix

References

4 Transformation Optics: Subwavelength Control of Light Leads to Novel Phased Array Antenna System Design

DIPANKAR MITRA, ERIC JAHNS, SHUVASHIS DEY, AND SAYAN ROY

4.1 Introduction

4.2 Form-Invariance of Maxwell's Equations and Its Relevance to TO

4.3 Design of Phased Array Antenna Elements Using TO

4.4 Future Directions of the TO-Based Design: Can Deep Learning Be a Solution?

4.5 Conclusion

Acknowledgment

References

5 Programming Quantum Hardware via Levenberg-Marquardt Machine Learning

JAMES E. STECK, NATHAN L. THOMPSON, AND ELIZABETH C. BEHRMAN

5.1 Introduction

5.2 Machine Learning for Deep Time Quantum Networks

5.2.1 Machine Learning in Simulation

5.2.2 A Hardware-Compatible Model for IBM Qiskit

5.3 Finite Difference Gradient Descent Learning on Quantum Hardware

5.3.1 Fourier Quantum Parameters for Simulations

5.3.2 Parameter Variation Finite Difference Gradients' Learning Results

5.3.3 Finite Difference Gradient Descent Learning on IBM Qiskit

5.4 Levenberg-Marquardt Learning for Quantum Hardware

5.4.1 Levenberg-Marquardt Algorithm Applied to Quantum Computing

5.4.2 Levenberg-Marquardt Training: MATLAB Simulation Results

5.4.3 Levenberg-Marquardt Qiskit Training Results

5.5 Conclusion

Acknowledgment

References

6 Numerical Modeling of the Major Temporal Arcade Using a Quantum Genetic Algorithm

JOSÉ ALFREDO SOTO-ÁLVAREZ, IVÁN CRUZ-ACEVES, ARTURO HERNÁNDEZ-AGUIRRE, MARTHA ALICIA HERNÁNDEZ-GONZÁLEZ, AND LUIS MIGUEL LÓPEZ-MONTERO

6.1 Introduction

6.2 Background

6.2.1 Database of Major Temporal Arcade Images

6.2.2 Polynomial Fitting

6.2.3 Genetic Algorithms

6.2.4 Quantum Genetic Algorithm

6.2.5 Proposed Method

6.2.6 Evaluation Measures

6.3 Computational Experiments

6.4 Conclusion

6.5 Appendix: Matlab Code

References

7 Quantum Logic Gate-Based Circuit Design for Computing Applications

JOY BHATTACHARJEE AND ARPAN DEYASI

7.1 Introduction

7.2 Quantum Computing

7.2.1 Superposition

7.2.2 Quantum Entanglement

7.2.3 Quantum Tunneling

7.3 Quantum Bit (Qubit)

7.3.1 What Is Qubit?

7.3.2 Formulation of a Qubit

7.4 Logic Gates

7.4.1 Pauli X, Y and Z Gates

7.4.2 Hadamard (H) Gate

7.4.3 R f Gate or RZ Gate

7.5 Multiplexer Using Quantum Bits

7.5.1 Fredkin Gate

7.5.2 Multiplexer

7.6 Conclusion

References

8 Recent Trends and Challenges in Quantum Computing Based on Artificial Intelligence

KRISHNANJAN MUKHERJEE, RATNESWAR GHOSH, AND SOUMEN SANTRA

8.1 Introduction

8.1.1 Literature Survey

8.1.2 Historical Development of Quantum Computing

8.2 Essential Hardware Components of a Quantum Computer

8.2.1 Data Plane of Quantum

8.2.2 Parameters of Plane of Control and Measurement

8.2.3 Processor Plane and Host Control

8.2.4 Qubit Technologies

8.3 Types of Quantum Computer

8.3.1 Quantum Annealer

8.3.2 Analogue Quantum Annealer

8.3.3 Universal Quantum Computer

8.4 Quantum Bits

8.5 Types of Qubits

8.5.1 Qubit: Superconductor

8.5.2 Qubit: Quantum Dot

8.5.3 Qubit: Trapped Ion

8.5.4 Qubit: Photonic

8.5.5 Qubit: Defect-Based

8.5.6 Qubit: Topological

8.5.7 NMR Qubit

8.6 Applications

8.6.1 Artificial Intelligence and Machine Learning

8.6.2 Computation Chemistry

8.6.3 Cybersecurity and Cryptography

8.6.4 Weather Forecasting

8.7 Comparisons of Quantum Computing Applications

8.7.1 Margolus and Toffoli Gates

8.7.2 Deutsch-Jozsa Algorithm

8.7.3 Bernstein-Vazirani Algorithm

8.8 Recent Works

8.8.1 Case Study 1

8.8.2 Case Study 2

8.8.3 Case Study 3

8.8.4 Some of the Recent Works on Quantum Computing

8.9 Future Works and Conclusion

References

9 Quantum Microwave Engineering: A New Application Area of Quantum Computing

PAMPA DEBNATH, ARPAN DEYASI, AND SIDDHARTHA BHATTACHARYYA

9.1 Introduction

9.2 Quantum Microwave Propagation

9.2.1 Guided Propagation

9.2.2 Non-Guided Propagation

9.3 Quantum Computing with Qubits

9.3.1 Qubit Basics

9.3.2 Qubits Operated as Resonators

9.4 Physical Realization of Qubit

9.4.1 Qubit Trapped Ion

9.4.2 Spin Qubits for Semiconductors

9.4.3 Superconducting Qubits

9.5 Conclusion

References

10 Intelligent Quantum Information Processing: Future Directions of Research

PAMPA DEBNATH, ARPAN DEYASI, AND SIDDHARTHA BHATTACHARYYA

10.1 Conclusion

10.2 Future Research Initiatives

References

Index

最近チェックした商品