Machine Learning-Based Modelling in Atomic Layer Deposition Processes (Emerging Materials and Technologies)

個数:
電子版価格
¥11,320
  • 電子版あり

Machine Learning-Based Modelling in Atomic Layer Deposition Processes (Emerging Materials and Technologies)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 354 p.
  • 言語 ENG
  • 商品コード 9781032386706
  • DDC分類 621.381520285631

Full Description

While thin film technology has benefited greatly from artificial intelligence (AI) and machine learning (ML) techniques, there is still much to be learned from a full-scale exploration of these technologies in atomic layer deposition (ALD). This book provides in-depth information regarding the application of ML-based modeling techniques in thin film technology as a standalone approach and integrated with the classical simulation and modeling methods. It is the first of its kind to present detailed information regarding approaches in ML-based modeling, optimization, and prediction of the behaviors and characteristics of ALD for improved process quality control and discovery of new materials. As such, this book fills significant knowledge gaps in the existing resources as it provides extensive information on ML and its applications in film thin technology.

Offers an in-depth overview of the fundamentals of thin film technology, state-of-the-art computational simulation approaches in ALD, ML techniques, algorithms, applications, and challenges.
Establishes the need for and significance of ML applications in ALD while introducing integration approaches for ML techniques with computation simulation approaches.
Explores the application of key techniques in ML, such as predictive analysis, classification techniques, feature engineering, image processing capability, and microstructural analysis of deep learning algorithms and generative model benefits in ALD.
Helps readers gain a holistic understanding of the exciting applications of ML-based solutions to ALD problems and apply them to real-world issues.

Aimed at materials scientists and engineers, this book fills significant knowledge gaps in existing resources as it provides extensive information on ML and its applications in film thin technology. It also opens space for future intensive research and intriguing opportunities for ML-enhanced ALD processes, which scale from academic to industrial applications.

Contents

Part 1: Introduction to Atomic Layer Deposition. 1. Overview of Atomic Layer Deposition and Thin Film Technology. 2. State of the Art Modeling and Simulation Approaches in ALD. 3. Characterization Methods in ALD. 4. Industry 4.0, Manufacturing Sector and Thin Film Technology. Part 2: Machine Learning Techniques. 5. Fundamentals of Machine Learning. 6. Supervised Learning. 7. Unsupervised Learning. 8. Deep Learning. 9. Hard and Soft Computing. Part 3: Machine Learning Applications in Atomic Layer Deposition. 10. Why Machine Learning? 11. Machine-Learning Based Predictive Analysis in ALD. 12. Machine Learning-Based Classification Techniques in ALD. 13. Deep Learning in Atomic Layer Deposition. 14. Feature Engineering in Atomic Layer Deposition. 15. Limitations, Opportunities, and Future Directions.

最近チェックした商品