Geometry of Derivation with Applications

個数:

Geometry of Derivation with Applications

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 356 p.
  • 言語 ENG
  • 商品コード 9781032349169
  • DDC分類 516.13

Full Description

Geometry of Derivation with Applications is the fifth work in a longstanding series of books on combinatorial geometry (Subplane Covered Nets, Foundations of Translation Planes, Handbook of Finite Translation Planes, and Combinatorics of Spreads and Parallelisms). Like its predecessors, this book will primarily deal with connections to the theory of derivable nets and translation planes in both the finite and infinite cases. Translation planes over non-commutative skewfields have not traditionally had a significant representation in incidence geometry, and derivable nets over skewfields have only been marginally understood. Both are deeply examined in this volume, while ideas of non-commutative algebra are also described in detail, with all the necessary background given a geometric treatment.

The book builds upon over twenty years of work concerning combinatorial geometry, charted across four previous books and is suitable as a reference text for graduate students and researchers. It contains a variety of new ideas and generalizations of established work in finite affine geometry and is replete with examples and applications.

Contents

Acknowledgements. Preface. Part 1. Classical theory of derivation. Chapter 1. Coordinate methods. Chapter 2. Embedding theory of derivable nets. Part 2. Classifying derivable nets over skewfields. Chapter 3. Fundamentals & background. Chapter 4. Classification theory over skewfields. Part 3. Types i of derivable nets. Chapter 5. The types. Part 4. Flocks of a-cones. Chapter 6. Klein quadric and generalization. Part 5. Flock geometries. Chapter 7. Related geometries. Part 6. Twisted hyerbolic flocks. Chapter 8. Hyperbolic flocks and generalizations. Part 7. Lifting. Chapter 9. Chains & surjectivity of degree 1/k. Lifting skewfields. Chapter 10. General theory. Part 9. Bilinearity. Chapter 11. General bilinear geometries. Part 10. Multiple replacement theorem. Chapter 12. The general theorem. Part 11. Classification of subplane covered nets. Chapter 13. Suspect subplane covered nets. Part 12. Extensions of skewfields. Chapter 14. Quaternion division ring extensions. Chapter 15. General ideas on Klein extensions. Bibliography. Index.

最近チェックした商品