Applied Artificial Intelligence : A Biomedical Perspective (Biomedical and Robotics Healthcare)

個数:

Applied Artificial Intelligence : A Biomedical Perspective (Biomedical and Robotics Healthcare)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 390 p.
  • 言語 ENG
  • 商品コード 9781032349152
  • DDC分類 610.284

Full Description

This book explores the advancements and future challenges in biomedical application developments using breakthrough technologies like Artificial Intelligence (AI), Internet of Things (IoT), and Signal Processing. It will also contribute to biosensors and secure systems,and related research. Applied Artificial Intelligence: A Biomedical Perspective begins by detailing recent trends and challenges of applied artificial intelligence in biomedical systems.

Part I of the book presents the technological background of the book in terms of applied artificial intelligence in the biomedical domain. Part II demonstrates the recent advancements in automated medical image analysis that have opened ample research opportunities in the applications of deep learning to different diseases. Part III focuses on the use of cyberphysical systems that facilitates computing anywhere by using medical IoT and biosensors and the numerous applications of this technology in the healthcare domain. Part IV describes the different signal processing applications in the healthcare domain. It also includes the prediction of some human diseases based on the inputs in signal format. Part V highlights the scope and applications of biosensors and security aspects of biomedical images.

The book will be beneficial to the researchers, industry persons, faculty, and students working in biomedical applications of computer science and electronics engineering. It will also be a useful resource for teaching courses like AI/ML, medical IoT, signal processing, biomedical engineering, and medical image analysis.

Contents

1 Healthcare Fees-Centric to Value-Centric Transformation through Data, Analytics, and Artificial Intelligence
2 AI-Based Healthcare: Top Businesses and Technologies 3 Insights into AI, Machine Learning, and Deep Learning 4 Deep Learning for Visual Perceptual Brain Decoding as Image Classification 5 Automatic Brain Tumor Segmentation in Multimodal MRI Images Using Deep Learning 6 Automated Prediction of Lung Cancer Using Deep Learning Algorithms 7 Cervical Cancer Screening Approach Using AI D. Santhi, M. Carmel Sobia, and M. Jayalakshmi 8 Progression Detection of Multiple Sclerosis in Brain MRI Images 9 Artificial Intelligence Clustering Techniques on Dermoscopic Skin Lesion Images 10 Automated Alzheimer's Disease Detection with Optimized Fuzzy Neural Network 11 A Comprehensive Survey with Bibliometric Analysis on Recent Research Opportunities of Multimodal Medical Image Fusion in Various Applications 12 Big Data in IoT for Healthcare Application 13 Automatic Detection of Diabetic Retinopathy to Avoid Blindness 14 A Review on Wireless BAN to Measure the Respiration Rate Using SoC Architecture 15 Deep Feature Extraction for EEG Signal Classification in Motor Imagery Tasks 16 Effect of Age in Normal Women by Heart Rate Variability Analysis
17 EEG Signal Analysis Using Machine Learning and Artificial Intelligence for Identification of Brain Dysfunction
18 Cervical Cancer Screening Methods: Comprehensive Survey 19 Understanding Assessment Methods and Sensors for ADHD Hyperactive-Impulsive Type among Children 20 Security of Medical Image Information by Cryptography and Watermarking Using Python 21 Integration of Biosensors and Drug Delivery Systems for Biomedical Applications 22 Automatic Liver and Lesion Segmentation in CT Using 3-D Context Convolutional Neural Network: 3-D Context U-Net

最近チェックした商品