高度道路交通システムにおける説明可能なAI<br>Explainable Artificial Intelligence for Intelligent Transportation Systems

個数:

高度道路交通システムにおける説明可能なAI
Explainable Artificial Intelligence for Intelligent Transportation Systems

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 276 p.
  • 言語 ENG
  • 商品コード 9781032344577
  • DDC分類 388.312

Full Description

Artificial Intelligence (AI) and Machine Learning (ML) are set to revolutionize all industries, and the Intelligent Transportation Systems (ITS) field is no exception. While ML, especially deep learning models, achieve great performance in terms of accuracy, the outcomes provided are not amenable to human scrutiny and can hardly be explained. This can be very problematic, especially for systems of a safety-critical nature such as transportation systems. Explainable AI (XAI) methods have been proposed to tackle this issue by producing human interpretable representations of machine learning models while maintaining performance. These methods hold the potential to increase public acceptance and trust in AI-based ITS.

FEATURES:

Provides the necessary background for newcomers to the field (both academics and interested practitioners)
Presents a timely snapshot of explainable and interpretable models in ITS applications
Discusses ethical, societal, and legal implications of adopting XAI in the context of ITS
Identifies future research directions and open problems

Contents

Section I Towards explainable ITS. 1. Explainable AI for Intelligent Transportation Systems: Are we there yet? Amina Adadi and Afaf Bouhoute. Section II Interpretable methods for ITS applications. 2. Towards Safe, Explainable, and Regulated Autonomous Driving Shahin Atakishiyev, Mohammad Salameh, Hengshuai Yao, and Randy Goebel. 3. Explainable Machine Learning Method for Predicting Road Traffic Accident Injury Severity in Addis Ababa city based on a New Graph Feature Selection Technique Yassine Akhiat , Younes Bouchlaghem, Ahmed Zinedine, and Mohamed Chahhou. 4. COVID-19 pandemic effects on traffic crash patterns and in- juries in Barcelona, Spain: An interpretable approach Ahmad Aiash and Francesc Robuste. 5. Advances in Explainable Reinforcement Learning: an Intelligent Transportation Systems perspective Rudy Milani, Maximilian Moll and Stefan Pickl. 6. Road Traffic Data Collection: Handling Missing Data Abdelilah Mbarek, Mouna Jiber, Ali Yahyaouy, and Abdelouahed Sabri. 7. Explainability of surrogate models for traffic signal control Pawel Gora, Dominik Bogucki, and M. Latif Bolum. 8. Intelligent Techniques and Explainable Artificial Intelligence for Vessel Traffic Service: A Survey Meng Joo Er, Huibin Gong, Chuang Ma, Wenxiao Gao. 9. An Explainable Model for Detection and Recognition of Traffic Road Signs Anass Barodi, Abdelkarim Zemmouri, Abderrahim Bajit, Mohammed Benbrahim, and Ahmed Tamtaoui. 10. An Interpretable Detection of Transportation Mode Consider- ing GPS, Spatial, and Contextual Data based on Ensemble Machine Learning Sajjad Sowlati, Rahim Ali Abbaspour, and Chehreghan. 11. Blockchain and Explainable AI for Trustworthy Autonomous Vehicles Ouassima Markouh, Amina Adadi, Mohammed Berrada. Section III Ethical, social and legal implications of XAI in ITS. 12. Ethical Decision-Making Under Different Perspective-Taking Scenarios and Demographic Characteristics: The Case of Autonomous Vehicles Kareem Othman.

最近チェックした商品