Machine Learning and Deep Learning in Natural Language Processing

個数:

Machine Learning and Deep Learning in Natural Language Processing

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 228 p.
  • 言語 ENG
  • 商品コード 9781032282879
  • DDC分類 006.35

Full Description

Natural Language Processing (NLP) is a sub-field of Artificial Intelligence, linguistics, and computer science and is concerned with the generation, recognition, and understanding of human languages, both written and spoken. NLP systems examine the grammatical structure of sentences as well as the specific meanings of words, and then they utilize algorithms to extract meaning and produce results. Machine Learning and Deep Learning in Natural Language Processing aims at providing a review of current Neural Network techniques in the NLP field, in particular about Conversational Agents (chatbots), Text-to-Speech, management of non-literal content - like emotions, but also satirical expressions - and applications in the healthcare field.

NLP has the potential to be a disruptive technology in various healthcare fields, but so far little attention has been devoted to that goal. This book aims at providing some examples of NLP techniques that can, for example, restore speech, detect Parkinson's disease, or help psychotherapists.

This book is intended for a wide audience. Beginners will find useful chapters providing a general introduction to NLP techniques, while experienced professionals will appreciate the chapters about advanced management of emotion, empathy, and non-literal content.

Contents

Preface. Editors. Contributors. Part I Introduction. Chapter 1 Introduction to Machine Learning, Deep Learning, and Natural Language Processing. Part II Overview of Conversational Agents. Chapter 2 Conversational Agents and Chatbots: Current Trends. Chapter 3 Unsupervised Hierarchical Model for Deep Empathetic Conversational Agents. Part III Sentiment and Emotions. Chapter 4 EMOTRON: An Expressive Text-to-Speech. Part IV Fake News and Satire. Chapter 5 Distinguishing Satirical and Fake News. Chapter 6 Automated Techniques for Identifying Claims and Assisting Fact Checkers. Part V Applications in Healthcare. Chapter 7 Whisper Restoration Combining Real- and Source-Model Filtered Speech for Clinical and Forensic Applications. Chapter 8 Analysis of Features for Machine Learning Approaches to Parkinson's Disease Detection. Chapter 9 Conversational Agents, Natural Language Processing, and Machine Learning for Psychotherapy. INDEX.

最近チェックした商品