Pythonを用いる数理的手法:物理学と工学における応用(テキスト)<br>Mathematical Methods using Python : Applications in Physics and Engineering

個数:
電子版価格
¥17,328
  • 電子版あり

Pythonを用いる数理的手法:物理学と工学における応用(テキスト)
Mathematical Methods using Python : Applications in Physics and Engineering

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 488 p.
  • 言語 ENG
  • 商品コード 9781032278360
  • DDC分類 530.1502855133

Full Description

This advanced undergraduate textbook presents a new approach to teaching mathematical methods for scientists and engineers. It provides a practical, pedagogical introduction to utilizing Python in Mathematical and Computational Methods courses. Both analytical and computational examples are integrated from its start. Each chapter concludes with a set of problems designed to help students hone their skills in mathematical techniques, computer programming, and numerical analysis. The book places less emphasis on mathematical proofs, and more emphasis on how to use computers for both symbolic and numerical calculations. It contains 182 extensively documented coding examples, based on topics that students will encounter in their advanced courses in Mechanics, Electronics, Optics, Electromagnetism, Quantum Mechanics etc.

An introductory chapter gives students a crash course in Python programming and the most often used libraries (SymPy, NumPy, SciPy, Matplotlib). This is followed by chapters dedicated to differentiation, integration, vectors and multiple integration techniques. The next group of chapters covers complex numbers, matrices, vector analysis and vector spaces. Extensive chapters cover ordinary and partial differential equations, followed by chapters on nonlinear systems and on the analysis of experimental data using linear and nonlinear regression techniques, Fourier transforms, binomial and Gaussian distributions. The book is accompanied by a dedicated GitHub website, which contains all codes from the book in the form of ready to run Jupyter notebooks. A detailed solutions manual is also available for instructors using the textbook in their courses.

Key Features:

A unique teaching approach which merges mathematical methods and the Python programming skills which physicists and engineering students need in their courses
Uses examples and models from physical and engineering systems, to motivate the mathematics being taught
Students learn to solve scientific problems in three different ways: traditional pen-and-paper methods, using scientific numerical techniques with NumPy and SciPy, and using Symbolic Python (SymPy).

Contents

Chapter 1: Introduction to Python. Chapter 2: Differentiation. Chapter 3: Integration. Chapter 4: Vectors. Chapter 5: Multiple Integrals. Chapter 6: Complex Numbers. Chapter 7: Matrices. Chapter 8: Vector Analysis. Chapter 9: Vector Spaces. Chapter 10: Ordinary Differential Equations. Chapter 11: Partial Differential Equations. Chapter 12: Analysis of Nonlinear Systems. Chapter 13: Analysis of Experimental Data. Further Reading and Additional Resources. Index.

最近チェックした商品