Big Data and Information Theory

個数:

Big Data and Information Theory

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 116 p.
  • 言語 ENG
  • 商品コード 9781032266329
  • DDC分類 003.54

Full Description

Big Data and Information Theory are a binding force between various areas of knowledge that allow for societal advancement. Rapid development of data analytic and information theory allows companies to store vast amounts of information about production, inventory, service, and consumer activities. More powerful CPUs and cloud computing make it possible to do complex optimization instead of using heuristic algorithms, as well as instant rather than offline decision-making.

The era of "big data" challenges includes analysis, capture, curation, search, sharing, storage, transfer, visualization, and privacy violations. Big data calls for better integration of optimization, statistics, and data mining. In response to these challenges this book brings together leading researchers and engineers to exchange and share their experiences and research results about big data and information theory applications in various areas. This book covers a broad range of topics including statistics, data mining, data warehouse implementation, engineering management in large-scale infrastructure systems, data-driven sustainable supply chain network, information technology service offshoring project issues, online rumors governance, preliminary cost estimation, and information system project selection.

The chapters in this book were originally published in the journal, International Journal of Management Science and Engineering Management.

Contents

Preface 1. Engineering management: new advances and three open questions 2. Bayes and big data: the consensus Monte Carlo algorithm 3. Measurement and analysis of quality of life related to environmental hazards: the methodology illustrated by recent epidemiological studies 4. Big data analytics: integrating penalty strategies 5. Seeking relationships in big data: a Bayesian perspective 6. Designing a data-driven leagile sustainable closed-loop supply chain network 7. Exploring capability maturity models and relevant practices as solutions addressing information technology service offshoring project issues 8. The evolution and governance of online rumors during the public health emergency: taking COVID-19 pandemic related rumors as an example 9. An empirical study of data warehouse implementation effectiveness 10. Developing a preliminary cost estimation model for tall buildings based on machine learning 11. A framework for managing uncertainty in information system project selection: an intelligent fuzzy approach

最近チェックした商品