Phishing Detection Using Content-Based Image Classification

個数:

Phishing Detection Using Content-Based Image Classification

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 130 p.
  • 言語 ENG
  • 商品コード 9781032265025
  • DDC分類 005.82

Full Description

Phishing Detection Using Content-Based Image Classification is an invaluable resource for any deep learning and cybersecurity professional and scholar trying to solve various cybersecurity tasks using new age technologies like Deep Learning and Computer Vision. With various rule-based phishing detection techniques at play which can be bypassed by phishers, this book provides a step-by-step approach to solve this problem using Computer Vision and Deep Learning techniques with significant accuracy.

The book offers comprehensive coverage of the most essential topics, including:




Programmatically reading and manipulating image data



Extracting relevant features from images



Building statistical models using image features



Using state-of-the-art Deep Learning models for feature extraction



Build a robust phishing detection tool even with less data



Dimensionality reduction techniques



Class imbalance treatment



Feature Fusion techniques



Building performance metrics for multi-class classification task

Another unique aspect of this book is it comes with a completely reproducible code base developed by the author and shared via python notebooks for quick launch and running capabilities. They can be leveraged for further enhancing the provided models using new advancement in the field of computer vision and more advanced algorithms.

Contents

Chapter 1. Phishing and Cybersecurity. Basics of Phishing in Cybersecurity. Phishing Detection Techniques. List (whitelist/blacklist) based. Heuristics (pre-defined rules) based. Visual similarity based. Race between Phishers and Anti-Phishers. Chapter 2. Image Processing based Phishing Detection Techniques. Image processing based phishing detection techniques. Challenges in Phishing Detection using website images. Comparison of Techniques. Summary of Phishing detection using image processing techniques. Chapter 3. Implementing CNN for classifying phishing websites. Data Selection and Pre-Processing. Classification using CNN. CNN implementation. Performance metrics. Building a Convolutional Neural Network Model. Chapter 4. Transfer Learning Approach in Phishing Detection. Classification using Transfer Learning. Transfer Learning python implementation. Performance assessment of CNN models. Chapter 5. Feature Extraction and Representation Learning. Classification using Representation Learning. Data Preparation.. Feature Extraction using CNN off-the-shelf architectures. Handling class imbalance using SMOTE. SMOTE python implementation. Machine learning Classifier. Performance assessment of various experimentations. Chapter 6. Dimensionality Reduction Techniques. Basics of dimensionality reduction. PCA implementation using python. Performance assessment of various experimentations. Chapter 7. Feature Fusion Techniques. Basics of feature fusion technique. Different combinations of image representations. Different feature fusion approaches. Performance assessment of various experimentations. Chapter 8. Comparison of Phishing detection approaches. Classification Approaches. Evaluation of Classification Experiments. Comparison of the best performing model with the State-of-the-art. Chapter 9. Basics of Digital Image Processing. Basics of digital image processing. Basics of extracting features using OpenCV.

最近チェックした商品