Rによる因子分析と次数削減:社会科学者のツールキット<br>Factor Analysis and Dimension Reduction in R : A Social Scientist's Toolkit

個数:

Rによる因子分析と次数削減:社会科学者のツールキット
Factor Analysis and Dimension Reduction in R : A Social Scientist's Toolkit

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 564 p.
  • 言語 ENG
  • 商品コード 9781032246697
  • DDC分類 519.54028553

Full Description

Factor Analysis and Dimension Reduction in R provides coverage, with worked examples, of a large number of dimension reduction procedures along with model performance metrics to compare them. Factor analysis in the form of principal components analysis (PCA) or principal factor analysis (PFA) is familiar to most social scientists. However, what is less familiar is understanding that factor analysis is a subset of the more general statistical family of dimension reduction methods.

The social scientist's toolkit for factor analysis problems can be expanded to include the range of solutions this book presents. In addition to covering FA and PCA with orthogonal and oblique rotation, this book's coverage includes higher-order factor models, bifactor models, models based on binary and ordinal data, models based on mixed data, generalized low-rank models, cluster analysis with GLRM, models involving supplemental variables or observations, Bayesian factor analysis, regularized factor analysis, testing for unidimensionality, and prediction with factor scores. The second half of the book deals with other procedures for dimension reduction. These include coverage of kernel PCA, factor analysis with multidimensional scaling, locally linear embedding models, Laplacian eigenmaps, diffusion maps, force directed methods, t-distributed stochastic neighbor embedding, independent component analysis (ICA), dimensionality reduction via regression (DRR), non-negative matrix factorization (NNMF), Isomap, Autoencoder, uniform manifold approximation and projection (UMAP) models, neural network models, and longitudinal factor analysis models. In addition, a special chapter covers metrics for comparing model performance.

Features of this book include:

Numerous worked examples with replicable R code
Explicit comprehensive coverage of data assumptions
Adaptation of factor methods to binary, ordinal, and categorical data
Residual and outlier analysis
Visualization of factor results
Final chapters that treat integration of factor analysis with neural network and time series methods

Presented in color with R code and introduction to R and RStudio, this book will be suitable for graduate-level and optional module courses for social scientists, and on quantitative methods and multivariate statistics courses.

Contents

PART I: MULTIVARIATE ANALYSIS OF FACTORS AND COMPONENTS
Chapter 1: Factor Analysis: Purposes and Research Questions
Chapter 2: Dealing with the Assumptions and Limitations of Factor Analysis
Chapter 3: Fundamental Concepts and Functions in Factor Analysis
Chapter 4: Quick Start: Principal Axis Factoring (FA) in R
Chapter 5: Quick Start: Confirmatory Factor Analysis in R
Chapter 6. Quick Start: Principal Components Analysis (PCA) in R
Chapter 7: Oblique and Higher Order Factor Models
Chapter 8: Factor Analysis for Binary, Ordinal, and Mixed Data
Chapter 9: FA in Greater Detail
Chapter 10: PCA in Greater Detail

PART II: ADDITIONAL TOOLS FOR DIMENSION REDUCTION
Chapter 11: Sixteen Additional Methods for Dimension Reduction (DimRed)
Chapter 12: Metrics for Comparing and Evaluating Dimension Reduction Models
Chapter 13: Recipes: An Alternative System for Dimension Reduction
Chapter14: Factor Analysis for Neural Models
Chapter 15: Factor Analysis for Time Series Data

APPENDICES
I. Datasets used in this volume
2. Introduction to R and RStudio