教育アセスメントにおける自然言語処理<br>Advancing Natural Language Processing in Educational Assessment (Ncme Applications of Educational Measurement and Assessment)

個数:
電子版価格
¥0
  • 電子版あり

教育アセスメントにおける自然言語処理
Advancing Natural Language Processing in Educational Assessment (Ncme Applications of Educational Measurement and Assessment)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 250 p.
  • 言語 ENG
  • 商品コード 9781032244525
  • DDC分類 371.261

Full Description

Advancing Natural Language Processing in Educational Assessment examines the use of natural language technology in educational testing, measurement, and assessment. Recent developments in natural language processing (NLP) have enabled large-scale educational applications, though scholars and professionals may lack a shared understanding of the strengths and limitations of NLP in assessment as well as the challenges that testing organizations face in implementation. This first-of-its-kind book provides evidence-based practices for the use of NLP-based approaches to automated text and speech scoring, language proficiency assessment, technology-assisted item generation, gamification, learner feedback, and beyond. Spanning historical context, validity and fairness issues, emerging technologies, and implications for feedback and personalization, these chapters represent the most robust treatment yet about NLP for education measurement researchers, psychometricians, testing professionals, and policymakers.

The Open Access version of this book, available at www.taylorfrancis.com, has been made available under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 license.

Contents

Preface

by Victoria Yaneva and Matthias von Davier

Section I: Automated Scoring

Chapter 1: The Role of Robust Software in Automated Scoring

by Nitin Madnani, Aoife Cahill, and Anastassia Loukina

Chapter 2: Psychometric Considerations when Using Deep Learning for Automated Scoring

by Susan Lottridge, Chris Ormerod, and Amir Jafari

Chapter 3: Speech Analysis in Assessment

by Jared C. Bernstein and Jian Cheng

Chapter 4: Assessment of Clinical Skills: A Case Study in Constructing an NLP-Based Scoring System for Patient Notes

by Polina Harik, Janet Mee, Christopher Runyon, and Brian E. Clauser

Section II: Item Development

Chapter 5: Automatic Generation of Multiple-Choice Test Items from Paragraphs Using Deep Neural Networks

by Ruslan Mitkov, Le An Ha, Halyna Maslak, Tharindu Ranasinghe, and Vilelmini Sosoni

Chapter 6: Training Optimus Prime, M.D.: A Case Study of Automated Item Generation using Artificial Intelligence - From Fine-Tuned GPT2 to GPT3 and Beyond

by Matthias von Davier

Chapter 7: Computational Psychometrics for Digital-first Assessments: A Blend of ML and Psychometrics for Item Generation and Scoring

by Geoff LaFlair, Kevin Yancey, Burr Settles, Alina A von Davier

Section III: Validity and Fairness

Chapter 8: Validity, Fairness, and Technology-based Assessment

by Suzanne Lane

Chapter 9: Evaluating Fairness of Automated Scoring in Educational Measurement

by Matthew S. Johnson and Daniel F. McCaffrey

Section IV: Emerging Technologies

Chapter 10: Extracting Linguistic Signal from Item Text and Its Application to Modeling Item Characteristics

by Victoria Yaneva, Peter Baldwin, Le An Ha, and Christopher Runyon

Chapter 11: Stealth Literacy Assessment: Leveraging Games and NLP in iSTART

by Ying Fang, Laura K. Allen, Rod D. Roscoe, and Danielle S. McNamara

Chapter 12: Measuring Scientific Understanding Across International Samples: The Promise of Machine Translation and NLP-based Machine Learning Technologies

by Minsu Ha and Ross H. Nehm

Chapter 13: Making Sense of College Students' Writing Achievement and Retention with Automated Writing Evaluation

by Jill Burstein, Daniel McCaffrey, Steven Holtzman & Beata Beigman Klebanov

Contributor Biographies

最近チェックした商品