An Introduction to Spatial Data Science with GeoDa : Volume 1: Exploring Spatial Data

個数:

An Introduction to Spatial Data Science with GeoDa : Volume 1: Exploring Spatial Data

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 416 p.
  • 言語 ENG
  • 商品コード 9781032229188
  • DDC分類 519.53

Full Description

This book is the first in a two-volume series that introduces the field of spatial data science. It offers an accessible overview of the methodology of exploratory spatial data analysis. It also constitutes the definitive user's guide for the widely adopted GeoDa open-source software for spatial analysis. Leveraging a large number of real-world empirical illustrations, readers will gain an understanding of the main concepts and techniques, using dynamic graphics for thematic mapping, statistical graphing, and, most centrally, the analysis of spatial autocorrelation. Key to this analysis is the concept of local indicators of spatial association, pioneered by the author and recently extended to the analysis of multivariate data.

The focus of the book is on intuitive methods to discover interesting patterns in spatial data. It offers a progression from basic data manipulation through description and exploration to the identification of clusters and outliers by means of local spatial autocorrelation analysis. A distinctive approach is to spatialize intrinsically non-spatial methods by means of linking and brushing with a range of map representations, including several that are unique to the GeoDa software. The book also represents the most in-depth treatment of local spatial autocorrelation and its visualization and interpretation by means of GeoDa.

The book is intended for readers interested in going beyond simple mapping of geographical data to gain insight into interesting patterns. Some basic familiarity with statistical concepts is assumed, but no previous knowledge of GIS or mapping is required.

Key Features:

• Includes spatial perspectives on cluster analysis
• Focuses on exploring spatial data
• Supplemented by extensive support with sample data sets and examples on the GeoDaCenter website

This book is both useful as a reference for the software and as a text for students and researchers of spatial data science.

Contents

Chapter 1: Introduction. Chapter 2: Basic Data Operations. Chapter 3: GIS Operations. Chapter 4: Geovisualization. Chapter 5: Statistical Maps. Chapter 6: Maps for Rates. Chapter 7: Univariate and Bivariate Data Exploration. Chapter 8: Multivariate Data Exploration. Chapter 9: Space-Time Exploration. Chapter 10: Contiguity-Based Spatial Weights. Chapter 11: Distance-Based Spatial Weights. Chapter 12: Special Weights Operations. Chapter 13: Spatial Autocorrelation. Chapter 14: Advanced Global Spatial Autocorrelation. Chapter 15: Nonparametric Spatial Autocorrelation. Chapter 16: LISA and Local Moran. Chapter 17: Other Local Spatial Autocorrelation Statistics. Chapter 18: Multivariate Local Spatial Autocorrelation. Chapter 19: LISA for Discrete Variables. Chapter 20: Density-Based Clustering Methods. Chapter 21: Postscript - The Limits of Exploration. Appendices, Bibliography

最近チェックした商品