計量科学のための数学・統計学<br>Mathematics and Statistics for the Quantitative Sciences

個数:
電子版価格
¥17,156
  • 電子版あり

計量科学のための数学・統計学
Mathematics and Statistics for the Quantitative Sciences

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 454 p.
  • 言語 ENG
  • 商品コード 9781032208145
  • DDC分類 001.42

Full Description

Mathematics and Statistics for the Quantitative Sciences was born from a radical reimagining of first-year mathematics. While calculus is often seen as the foundational mathematics required for any scientist, this often leads to mathematics being seen as some, ultimately useless, hoop that needs to be jumped through in order to do what someone really wants to do. This sentiment is everywhere at every level of education. It even shows up in how people stereotype mathematics courses.

What this book aims to do, therefore, is serve as a foundational text in everyday mathematics in a way that is both engaging and practically useful. The book seeks to teach the mathematics needed to start to answer fundamental questions like 'why' or 'how'. Why do we only need to take census data once every few years? How do we determine the optimal dosing of a new pharmaceutical without killing people in the process? Or, more generally, what does it even mean to be average? Or what does it mean for two things to actually be different? These questions require a different way of thinking — a quantitative intuition that goes beyond rote memorization and equips readers to meet the quantitative challenges inherent in any applied discipline.

Features

Draws from a diverse range of fields to make the applications as inclusive as possible
Would be ideal as a foundational mathematical and statistical textbook for any applied quantitative science course

Contents

Section I. Applied Mathematics. The Plot (so you don't lose it). 1. Functions. 1.1. Anatomy of a Function. 1.2. Modeling With Mathematics. 1.3. Constants and Linear Functions. 1.4. Polynomials. 1.5. Exponentials And Logarithms. 1.6. Functions in Higher Dimensions. 1.7. Contour Diagrams. 1.8. Models In Two Dimensions. 1.9. Variables vs Parameters. 2. Derivatives. 2.1. The Tangent Line. 2.2. Approximating Derivatives of Functions. 2.3. Limits. 2.4. Limits And Derivates. 2.5. Derivative Formulas. 2.6. The Product Rule. 2.7. The Chain Rule. 2.8. Mixing Rules. 2.9. Critical Values. 2.10. Constrained Optimization. 2.11. Elasticity. 2.12. Partial Derivatives. 3. Linear Algebra. 3.1. Vectors. 3.2. Matrices. 3.3. Multiplication: Numbers and Matrices. 3.4. Multiplication: Matrix and Vectors. 3.5. Multiplication: Matrix and Matrix. 3.6. Leslie Matrices. 3.7. The Determinant. 3.8. Eigenvalues & Eigenvectors. 4. Derivatives in Multiple Dimensions. 4.1. Applications. 4.2. Distribution Fitting, Probability and Likelihood. 5. Differential Equations. 5.1. Solving Basic Differential Equations; With an Example. 5.2 Equilibria and Stability. 5.3 Equilibria and Linear Stability in Higher Dimensions. 5.4. The Jacobian. 6. Integration. 6.1. Accumulated Change. 6.2. The Fundamental Theorem of Calculus. 6.3. The Anti-Derivative. 6.4. Fundamental Theorem of Calculus Revisited. 6.5. Properties Of Integrals. 6.6. Integration by Parts. 6.7. Substitution. Section II. Applied Stats & Data Science. Some Context to Anchor Us. Math vs. the World. 7. Data and Summary Statistics. 7.1. What Is Data? 7.2. Data In Python. 7.3. Summary Statistics. 7.4. Ethical and Moral Considerations: Part 1. 7.5. Mean vs. Median vs. Mode. 7.6. Variance & Standard Deviation. 7.7. Ethical And Moral Considerations: Episode 2. 7.8. An Example. 7.9. The Empirical Rule. 8. Visualizing Data. 8.1. Plotting In Python. 8.2. Scatter Plots. 8.3. Outliers. 8.4. Correlation. 8.6. The Anatomy of a Technical Document. 8.7. Bad Plots and Why They're Bad. 9. Probability. 9.1. Ethical and Moral Considerations: A Very Special Episode. 9.2. Counting. 9.3. Permutations. 9.4. Combinations. 9.5. Combinations With Replacement. 9.6. Probability. 9.7. Properties of Probabilities. 9.8. More Notation. 9.9. Conditional Probability. 9.10. Bayes' Theorem. 9.11. The Prosecutor's Fallacy. 9.12. The Law of Total Probability. 10. Probability Distributions. 10.1. Discrete Probability Distributions. 10.2. The Binomial Distribution. 10.3. Trinomial Distribution. 10.4. Cumulative Probability Distributions. 10.5. Continuous Probability. 10.6. Continuous vs Discrete Probability Distributions. 10.7. Probability Density Functions. 10.8. The Normal Distribution. 10.9. Other Useful Distributions. 10.10. Mean, Median, Mode, Variance. 10.11. Summing To Infinity. 10.12. Probability and Python. 10.13. Practice Problems. 11. Fitting Data. 11.1. Defining Relationships. 11.2. Data and Lines. 11.3. Distribution Fitting & Likelihood. 11.4. Dummy Variables. 11.5. Logistic Regression. 11.6. Logistic Regression in Python. 11.7. Iterated Logistic Regression. 11.8. Random Forest Classification. 11.9. Bootstrapping & Confidence Intervals. 11.10. T-Statistics. 11.11. The Dichotomous Nature of P-Values. A. A Crash Course in Python.

最近チェックした商品