Evolutionary Optimization of Material Removal Processes

個数:

Evolutionary Optimization of Material Removal Processes

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 230 p.
  • 言語 ENG
  • 商品コード 9781032192703
  • DDC分類 671.350285

Full Description

The text comprehensively focuses on the concepts, implementation, and application of evolutionary algorithms for predicting, modeling, and optimizing the various material removal processes from their origin to the current advancements. This one-of-a-kind book encapsulates all the features related to the application and implementation of evolutionary algorithms for the purpose of predicting and optimizing the process characteristics of different machining methods and their allied processes that will provide comprehensive information. It broadly explains the concepts of employing evolutionary algorithm-based optimization in a broad domain of various material removal processes. Therefore, this book will enable prospective readers to take full advantage of recent findings and advancements in the fields of traditional, advanced, micro, and hybrid machining, among others. Moreover, the simplicity of its writing will keep readers engaged throughout and make it easier for them to understand the advanced topics.

The book-
• Offers a step-by-step guide to implement evolutionary algorithms for the overall optimization of conventional and contemporary machining processes
• Provides in-depth analysis of various material removal processes through evolutionary optimization
• Details an overview of different evolutionary optimization techniques
• Explores advanced processing of various engineering materials-based case studies

It further discusses different nature-inspired algorithms-based modeling, prediction, and modeling of machining responses in attempting advanced machining of the latest materials and related engineering problems along with case studies and practical examples. It will be an ideal reference text for graduate students and academic researchers working in the fields of mechanical engineering, aerospace engineering, industrial engineering, manufacturing engineering, and materials science.

Contents

Chapter 1

Experimental Investigation of Surface Roughness for Turning of UD-GFRP Composite Using PSO, GSA and PSOGSA Technique
Meenu and Surinder Kumar

Chapter 2

Multi-response Optimization During High-speed Drilling of Composite Laminate Using Grey Entropy Fuzzy (GEF) and Entropy Based Weight Integrated Multi-Variate Loss Function
Jalumedi Babu, Khaleel Ahmed, Lijo Paul, Abyson Scaria, and J. Paulo Davim

Chapter 3

Implementation of modern meta-heuristic algorithms for optimizing machinability in dry CNC finish-turning of AISI H13 die steel under annealed and hardened states
Nikolaos A. Fountas, Ioannis Papantoniou, John Kechagias, Dimitrios E. Manolakos, and Nikolaos M. Vaxevanidis

Chapter 4

Multi-response Optimization in Turning of UD-GFRP Composites using Weighted Principal Component Analysis (WPCA)
Meenu and Surinder Kumar

Chapter 5

Processes parameters optimization on surface roughness in turning of E-glass UD-GFRP composites using Flower Pollination Algorithm (FPA)
Surinder Kumar and Meenu

Chapter 6

Application of ANN and Taguchi technique for material removal rate by Abrasive Jet Machining with special abrasive materials
Sachin P. Ambade, Chetan K. Tembhurkar, Sagar Shelare and Santosh Gupta

Chapter 7

Investigation of MRR in face turning unidirectional GFRP composites by using Multiple Regression Methodology and Artificial Neural Network
Surinder Kumar, Meenu, and Pawan Kumar

Chapter 8

Optimization of CNC Milling Parameters for Al-CNT composites using Entropy based Neutrosophic Grey Relational TOPSIS Method
Sachchida Nand, Manvandra K Singh, and C M Krishna

Chapter 9

Experimental investigation of EDM potential to machine AISI 202 using Copper-alloy electrode and its modelling by Artificial Neural Network
Subhash Singh, and Girija Nandan Arka

Chapter 10

Prediction and Neural Modelling of Material Removal Rate in Electrochemical Machining of Nimonic 263 Alloy
Dilkush Bairwa, Dr Ravi Pratap Singh, Dr Ravinder Kataria, Dr Ravi Butola, Dr Mohd Javaid, Shailendra Chauhan, Madhusudan Painuly

Chapter 11

Optimization of End Milling Process Variables Using Multi Objective Genetic Algorithm
Jignesh Girishbhai Parmar, and Dr. Komal Ghanshyambhai Dave

Chapter 12

Micro-Electrochemical Machining of Nimonic 263 Alloy: An Experimental Investigation and ANN-based Prediction of Radial Over Cut
Dilkush Bairwa, Dr Ravi Pratap Singh, Dr Ravinder Kataria, Dr Sandeep Singhal, Dr Narendra Kumar, Shailendra Chauhan, and Madhusudan Painuly

最近チェックした商品