Advanced Electroencephalography Analytical Methods : Fundamentals, Acquisition, and Applications (Biomedical Signal and Image Processing)

個数:

Advanced Electroencephalography Analytical Methods : Fundamentals, Acquisition, and Applications (Biomedical Signal and Image Processing)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 268 p.
  • 言語 ENG
  • 商品コード 9781032171708
  • DDC分類 616.8047547

Full Description

Advanced Electroencephalography Analytical Methods: Fundamentals, Acquisition, and Applications presents the theoretical basis and applications of electroencephalography (EEG) signals in neuroscience, involving signal analysis, processing, signal acquisition, representation, and applications of EEG signal analysis using non-linear approaches and machine learning. It explains principles of neurophysiology, linear signal processing, computational intelligence, and the nature of signals including machine learning. Applications involve computer-aided diagnosis, brain-computer interfaces, rehabilitation engineering, and applied neuroscience.

This book:

Includes a comprehensive review on biomedical signals nature and acquisition aspects
Focuses on selected applications of neuroscience/cardiovascular/muscle-related biomedical areas
Provides a machine learning update to a classical biomedical signal processing approach
Explains deep learning and application to biomedical signal processing and analysis
Explores relevant biomedical engineering and neuroscience state-of-the-art applications

This book is intended for researchers and graduate students in biomedical signal processing, electrical engineering, neuroscience, and computer science.

Contents

1. Diagnostic applications of EEG signal patterns in Neuroscience. 2. Deep Learning Techniques for Automatic Sleep Pattern Identification and Disorder Evaluation using EEG Signals. 3. Recent Trends in EEG-Based MI and SSVEP Brain-Computer Interface Applications - A Review. 4. Recent Trends in EEG-Based P300, Neuromarketing and E-sports Brain-Computer Interface Applications - A Review. 5. Significance of Fourier Transform for Epileptic EEG Signals Analysis. 6. Alternative treatment with nonperiodic acoustic stimulation for pharmacoresistant epileptic patients: an exploratory study. 7. Artifacts removal in Electroencephalogram (EEG) signals. 8. Multi-channel and multi-label decision-making system (MCL-DMS) for sleep stage and sleep disorder recognition from EEG signals. 9. Analyzing and Decoding Natural Reach & Grasp Action Using Convolutional Neural Network. 10. Classification of motor imagery EEG signals based on sparse representations of Empirical Mode Decomposition features. 11. Prediction of Onset of Seizures from EEG signals using ML Techniques.

最近チェックした商品