Machine Learning-Based Fault Diagnosis for Industrial Engineering Systems (Advances in Intelligent Decision-making, Systems Engineering, and Project Management)

個数:

Machine Learning-Based Fault Diagnosis for Industrial Engineering Systems (Advances in Intelligent Decision-making, Systems Engineering, and Project Management)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 80 p.
  • 言語 ENG
  • 商品コード 9781032147260
  • DDC分類 620.00452

Full Description

This book provides advanced techniques for precision compensation and fault diagnosis of precision motion systems and rotating machinery. Techniques and applications through experiments and case studies for intelligent precision compensation and fault diagnosis are offered along with the introduction of machine learning and deep learning methods.

Machine Learning-Based Fault Diagnosis for Industrial Engineering Systems discusses how to formulate and solve precision compensation and fault diagnosis problems. The book includes experimental results on hardware equipment used as practical examples throughout the book. Machine learning and deep learning methods used in intelligent precision compensation and intelligent fault diagnosis are introduced. Applications to deal with relevant problems concerning CNC machining and rotating machinery in industrial engineering systems are provided in detail along with applications used in precision motion systems.

Methods, applications, and concepts offered in this book can help all professional engineers and students across many areas of engineering and operations management that are involved in any part of Industry 4.0 transformation.

Contents

1. Background and Related Methods. 2. Fault Diagnosis Method Based on Recurrent Convolutional Neural Network. 3. Fault Diagnosis of Rotating Machinery Gear Based on Random Forest Algorithm. 4. Bearing Fault Diagnosis under Different Working Conditions Based on Generative Adversarial Networks. 5. Rotating Machinery Gearbox Fault Diagnosis Based on One-Dimensional Convolutional Neural Network and Random Forest. 6. Fault Diagnosis for Rotating Machinery Gearbox Based on Improved Random Forest Algorithm. 7. Imbalanced Data Fault Diagnosis Based on Hybrid Feature Dimensionality Reduction and Varied Density Based Safe-Level Synthetic Minority Oversampling Technique.

最近チェックした商品