Machine Learning and Deep Learning Techniques for Medical Science (Artificial Intelligence Ai: Elementary to Advanced Practices)

個数:

Machine Learning and Deep Learning Techniques for Medical Science (Artificial Intelligence Ai: Elementary to Advanced Practices)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 398 p.
  • 言語 ENG
  • 商品コード 9781032108827
  • DDC分類 610.285

Full Description

The application of machine learning is growing exponentially into every branch of business and science, including medical science. This book presents the integration of machine learning (ML) and deep learning (DL) algorithms that can be applied in the healthcare sector to reduce the time required by doctors, radiologists, and other medical professionals for analyzing, predicting, and diagnosing the conditions with accurate results. The book offers important key aspects in the development and implementation of ML and DL approaches toward developing prediction tools and models and improving medical diagnosis.

The contributors explore the recent trends, innovations, challenges, and solutions, as well as case studies of the applications of ML and DL in intelligent system-based disease diagnosis. The chapters also highlight the basics and the need for applying mathematical aspects with reference to the development of new medical models. Authors also explore ML and DL in relation to artificial intelligence (AI) prediction tools, the discovery of drugs, neuroscience, diagnosis in multiple imaging modalities, and pattern recognition approaches to functional magnetic resonance imaging images.

This book is for students and researchers of computer science and engineering, electronics and communication engineering, and information technology; for biomedical engineering researchers, academicians, and educators; and for students and professionals in other areas of the healthcare sector.




Presents key aspects in the development and the implementation of ML and DL approaches toward developing prediction tools, models, and improving medical diagnosis



Discusses the recent trends, innovations, challenges, solutions, and applications of intelligent system-based disease diagnosis



Examines DL theories, models, and tools to enhance health information systems



Explores ML and DL in relation to AI prediction tools, discovery of drugs, neuroscience, and diagnosis in multiple imaging modalities

Dr. K. Gayathri Devi is a Professor at the Department of Electronics and Communication Engineering, Dr. N.G.P Institute of Technology, Tamil Nadu, India.

Dr. Kishore Balasubramanian is an Assistant Professor (Senior Scale) at the Department of EEE at Dr. Mahalingam College of Engineering & Technology, Tamil Nadu, India.

Dr. Le Anh Ngoc is a Director of Swinburne Innovation Space and Professor in Swinburne University of Technology (Vietnam).

Contents

Chapter 1. A Comprehensive Study on MLP and CNN, and the Implementation of Multi-Class Image Classification using Deep CNN

Chapter 2. An Efficient Technique for Image Compression and Quality Retrieval in Diagnosis of Brain Tumour Hyper Spectral Image

Chapter 3. Classification of Breast Thermograms using a Multi-layer Perceptron with Back Propagation Learning

Chapter 4. Neural Networks for Medical Image Computing

Chapter 5. Recent Trends in Bio-Medical Waste, Challenges and Opportunities

Chapter 6. Teager-Kaiser Boost Clustered Segmentation of Retinal Fundus Images for Glaucoma Detection

Chapter 7. IoT-Based Deep Neural Network Approach for Heart Rate and SpO2 Prediction

Chapter 8. An Intelligent System for Diagnosis and Prediction of Breast Cancer Malignant Features using Machine Learning Algorithms

Chapter 9. Medical Image Classification with Artificial and Deep Convolutional Neural Networks: A Comparative Study

Chapter 10. Convolutional Neural Network for Classification of Skin Cancer Images

Chapter 11. Application of Artificial Intelligence in Medical Imaging

Chapter 12. Machine Learning Algorithms Used in Medical Field with a Case Study

Chapter 13. Dual Customized U-Net-based Based Automated Diagnosis of Glaucoma

Chapter 14. MuSCF-Net: Multi-scale, Multi-Channel Feature Network using Resnet-Based Attention Mechanism for Breast Histopathological Image Classification

Chapter 15. Artificial Intelligence is Revolutionizing Cancer Research

Chapter 16. Deep Learning to Diagnose Diseases and Security in 5G Healthcare InformaticsChapter 17. New Approaches in Machine-based Image Analysis for Medical Oncology

Chapter 18. Performance Analysis of Deep Convolutional Neural Networks for Diagnosing COVID-19: Data to Deployment

Chapter 19. Stacked Auto Encoder Deep Neural Network with Principal Components Analysis for Identification of Chronic Kidney Disease

最近チェックした商品